Abstract

We report a novel process technology of hemispherical shaped microlenses, using isotropic wet etching of silicon in an acid solution to produce the microlenses molds. Governed by process parameters such as temperature and etchant concentration, the isotropic wet etching is controlled to minimize various defects that appear during the molding creation. From the molds, microlenses are fabricated in polymer by conventional replication techniques such as hot embossing and UV-molding. The characterization of molds and measurements of replicated microlenses demonstrate high smoothness of the surfaces, excellent repeatability of mold fabrication and good optical properties. Using the proposed method, a wide range of lens geometries and lens arrays can be achieved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Appl. Opt. 37, 627-631 (1998).
    [CrossRef]
  2. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, and L. Castañeda-Escobar, "Rod and spherical silica microlenses fabricated by CO2 laser melting," Appl. Opt. 44, 4547-4556 (2005).
    [CrossRef] [PubMed]
  3. A. Y. Yi and L. Li, "Design and fabrication of a microlens array by use of a slow tool servo," Opt. Lett. 30, 1707-1709 (2005).
    [CrossRef] [PubMed]
  4. L. Jiang, T. Huang, C. Chiu, C. Chang, and S. Yang, "Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist," Opt. Express 15, 12088-12094 (2007).
    [CrossRef] [PubMed]
  5. Z. Popovic, R. Sprague, and G. A. Neville Conell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 23, 1281-1284 (1988).
    [CrossRef]
  6. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, "Simple reflow technique for fabrication of a microlens array in solgel glass," Opt. Lett. 28, 731-733 (2003).
    [CrossRef] [PubMed]
  7. M. Kubo and M. Hanabusa, "Fabrication of microlenses by laser chemical vapor deposition," Appl. Opt. 29, 2755-2759 (1990).
    [CrossRef] [PubMed]
  8. H. Hisakuni and K. Tanaka, "Optical fabrication of microlenses in chalcogenide glasses," Opt. Lett. 20, 958-960 (1995).
    [CrossRef] [PubMed]
  9. B. P. Keyworth, D. J. Corazza, J. N. McMullin, and L. Mabbott, "Single-step fabrication of refractive microlens arrays," Appl. Opt. 36, 2198-2202 (1997).
    [CrossRef] [PubMed]
  10. H. P. Herzig, Micro-Optics. Elements, Systems and Applications (Taylor & Francis, 1997).
  11. D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin "Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si," Opt. Express 11, 2244-2252 (2003).
    [CrossRef] [PubMed]
  12. K. P. Larsen, J. T. Ravnkilde, and O. Hansen, "Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication," J. Micromech. Microeng. 15, 873-882 (2005).
    [CrossRef]
  13. H. Robbins and B. Schwartz, "Chemical etching of Silicon I," J. Electrochem. Soc. 106, 505-508 (1959).
    [CrossRef]
  14. H. Robbins and B. Schwartz, "Chemical etching of Silicon II," J. Electrochem. Soc. 107, 108-111 (1960).
    [CrossRef]
  15. H. Robbins and B. Schwartz, "Chemical etching of Silicon III," J. Electrochem. Soc. 108, 365-372 (1961).
    [CrossRef]
  16. B.-K. Lee, D. S. Kim, and T. H. Kwom, "Replication of microlens arrays by injection molding," Microsyst.Technol. 10, 531-535 (2004).
    [CrossRef]
  17. P. Huang, T. Huang, Y. Sun, and S. Yang, "Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing," Opt. Express 16, 3041-3048 (2008).
    [CrossRef] [PubMed]
  18. R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007).
    [CrossRef]
  19. J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).
  20. J. P. John and J. McDonald, "Spray etching of silicon in the HNO3/HF/H2O system," J. Electrochem. Soc. 140, 2622-2625 (1993).
    [CrossRef]
  21. D. L. Klein and D. J. D'Stefan, "Controlled etching of silicon in the HF-HNO3 system," J. Electrochem. Soc. 109, 37-42 (2000).
    [CrossRef]
  22. H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, "Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases," J. Electrochem. Soc. 133, 1217-1226 (1986).
    [CrossRef]
  23. P. H. L. Notten, J. J. Kelly, and H. K. Kuiken, "Etching profiles at resist edges II. Experimental confirmation of models using GaAs," J. Electrochem. Soc. 133, 1226-1232 (1986).
    [CrossRef]
  24. V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings," J. Electrochem. Soc. 153, C641-C647 (2006).
    [CrossRef]
  25. V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Experimental investigation of anisotropy in isotropic silicon etching," J. Micromech. Microeng. 17, 2344-2351 (2007).
    [CrossRef]
  26. H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003).
    [CrossRef]
  27. C. B. Shin and D. J. Economou, "Forced and natural convection effects on the shape evolution of cavities during wet chemical etching," J. Electrochem. Soc. 138, 527-538 (1991).
    [CrossRef]
  28. M. S. Kulkarni and H. F. Erk, "Acid based etching of silicon wafers: mass-transfer and kinetic effects," J. Electrochem. Soc. 147, 176-188 (2000).
    [CrossRef]
  29. X. J. Shen, L. Pan, and L. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators, A: Physical 97-98, 428-433 (2002).
    [CrossRef]
  30. J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008).
    [CrossRef]
  31. J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
    [CrossRef]
  32. J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
    [CrossRef]
  33. H. Ottevaere and H. Thienpont, "Refractive Optical Microlenses: an Introduction to Nomenclature and Characterization Techniques," in Encyclopedia of Modern Optics 4, 21-43 (Elsevier, Oxford, 2004).

2008 (2)

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008).
[CrossRef]

P. Huang, T. Huang, Y. Sun, and S. Yang, "Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing," Opt. Express 16, 3041-3048 (2008).
[CrossRef] [PubMed]

2007 (3)

L. Jiang, T. Huang, C. Chiu, C. Chang, and S. Yang, "Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist," Opt. Express 15, 12088-12094 (2007).
[CrossRef] [PubMed]

R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007).
[CrossRef]

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Experimental investigation of anisotropy in isotropic silicon etching," J. Micromech. Microeng. 17, 2344-2351 (2007).
[CrossRef]

2006 (2)

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings," J. Electrochem. Soc. 153, C641-C647 (2006).
[CrossRef]

J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
[CrossRef]

2005 (3)

2004 (1)

B.-K. Lee, D. S. Kim, and T. H. Kwom, "Replication of microlens arrays by injection molding," Microsyst.Technol. 10, 531-535 (2004).
[CrossRef]

2003 (3)

2002 (2)

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

X. J. Shen, L. Pan, and L. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators, A: Physical 97-98, 428-433 (2002).
[CrossRef]

2000 (2)

M. S. Kulkarni and H. F. Erk, "Acid based etching of silicon wafers: mass-transfer and kinetic effects," J. Electrochem. Soc. 147, 176-188 (2000).
[CrossRef]

D. L. Klein and D. J. D'Stefan, "Controlled etching of silicon in the HF-HNO3 system," J. Electrochem. Soc. 109, 37-42 (2000).
[CrossRef]

1999 (1)

J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).

1998 (1)

1997 (1)

1995 (1)

1993 (1)

J. P. John and J. McDonald, "Spray etching of silicon in the HNO3/HF/H2O system," J. Electrochem. Soc. 140, 2622-2625 (1993).
[CrossRef]

1991 (1)

C. B. Shin and D. J. Economou, "Forced and natural convection effects on the shape evolution of cavities during wet chemical etching," J. Electrochem. Soc. 138, 527-538 (1991).
[CrossRef]

1990 (1)

1988 (1)

Z. Popovic, R. Sprague, and G. A. Neville Conell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 23, 1281-1284 (1988).
[CrossRef]

1986 (2)

H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, "Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases," J. Electrochem. Soc. 133, 1217-1226 (1986).
[CrossRef]

P. H. L. Notten, J. J. Kelly, and H. K. Kuiken, "Etching profiles at resist edges II. Experimental confirmation of models using GaAs," J. Electrochem. Soc. 133, 1226-1232 (1986).
[CrossRef]

1961 (1)

H. Robbins and B. Schwartz, "Chemical etching of Silicon III," J. Electrochem. Soc. 108, 365-372 (1961).
[CrossRef]

1960 (1)

H. Robbins and B. Schwartz, "Chemical etching of Silicon II," J. Electrochem. Soc. 107, 108-111 (1960).
[CrossRef]

1959 (1)

H. Robbins and B. Schwartz, "Chemical etching of Silicon I," J. Electrochem. Soc. 106, 505-508 (1959).
[CrossRef]

Akhzar-Mehr, O.

Berenschot, J. W.

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Experimental investigation of anisotropy in isotropic silicon etching," J. Micromech. Microeng. 17, 2344-2351 (2007).
[CrossRef]

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings," J. Electrochem. Soc. 153, C641-C647 (2006).
[CrossRef]

Bettiol, A. A.

R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007).
[CrossRef]

Beyerlein, M.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Bu, J.

Calixto, S.

Castañeda-Escobar, L.

Chang, C.

Chiu, C.

Corazza, D. J.

de Lima Monteiro, D. W.

D'Stefan, D. J.

D. L. Klein and D. J. D'Stefan, "Controlled etching of silicon in the HF-HNO3 system," J. Electrochem. Soc. 109, 37-42 (2000).
[CrossRef]

Dutta, R. K.

R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007).
[CrossRef]

Dziuban, J.

J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).

Economou, D. J.

C. B. Shin and D. J. Economou, "Forced and natural convection effects on the shape evolution of cavities during wet chemical etching," J. Electrochem. Soc. 138, 527-538 (1991).
[CrossRef]

Elwenspoek, M. C.

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Experimental investigation of anisotropy in isotropic silicon etching," J. Micromech. Microeng. 17, 2344-2351 (2007).
[CrossRef]

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings," J. Electrochem. Soc. 153, C641-C647 (2006).
[CrossRef]

Erk, H. F.

M. S. Kulkarni and H. F. Erk, "Acid based etching of silicon wafers: mass-transfer and kinetic effects," J. Electrochem. Soc. 147, 176-188 (2000).
[CrossRef]

Gorecka-Drzazga, A.

J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).

Hanabusa, M.

Hansen, O.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, "Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication," J. Micromech. Microeng. 15, 873-882 (2005).
[CrossRef]

He, M.

Hisakuni, H.

Huang, P.

Huang, T.

Jiang, L.

John, J. P.

J. P. John and J. McDonald, "Spray etching of silicon in the HNO3/HF/H2O system," J. Electrochem. Soc. 140, 2622-2625 (1993).
[CrossRef]

Kalima, V.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008).
[CrossRef]

Kanai, G.

Kelly, J. J.

H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, "Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases," J. Electrochem. Soc. 133, 1217-1226 (1986).
[CrossRef]

P. H. L. Notten, J. J. Kelly, and H. K. Kuiken, "Etching profiles at resist edges II. Experimental confirmation of models using GaAs," J. Electrochem. Soc. 133, 1226-1232 (1986).
[CrossRef]

Keyworth, B. P.

Kim, D. S.

B.-K. Lee, D. S. Kim, and T. H. Kwom, "Replication of microlens arrays by injection molding," Microsyst.Technol. 10, 531-535 (2004).
[CrossRef]

Klein, D. L.

D. L. Klein and D. J. D'Stefan, "Controlled etching of silicon in the HF-HNO3 system," J. Electrochem. Soc. 109, 37-42 (2000).
[CrossRef]

Komachi, Y.

Kubo, M.

Kudryashov, V.

Kuiken, H. K.

H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003).
[CrossRef]

H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, "Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases," J. Electrochem. Soc. 133, 1217-1226 (1986).
[CrossRef]

P. H. L. Notten, J. J. Kelly, and H. K. Kuiken, "Etching profiles at resist edges II. Experimental confirmation of models using GaAs," J. Electrochem. Soc. 133, 1226-1232 (1986).
[CrossRef]

Kuittinen, M.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008).
[CrossRef]

J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
[CrossRef]

Kulkarni, M. S.

M. S. Kulkarni and H. F. Erk, "Acid based etching of silicon wafers: mass-transfer and kinetic effects," J. Electrochem. Soc. 147, 176-188 (2000).
[CrossRef]

Kwom, T. H.

B.-K. Lee, D. S. Kim, and T. H. Kwom, "Replication of microlens arrays by injection molding," Microsyst.Technol. 10, 531-535 (2004).
[CrossRef]

Lamprecht, J.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Larsen, K. P.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, "Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication," J. Micromech. Microeng. 15, 873-882 (2005).
[CrossRef]

Laukkanen, J.

J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
[CrossRef]

Lee, B.-K.

B.-K. Lee, D. S. Kim, and T. H. Kwom, "Replication of microlens arrays by injection molding," Microsyst.Technol. 10, 531-535 (2004).
[CrossRef]

Leuchs, G.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Li, L.

Lin, L.

X. J. Shen, L. Pan, and L. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators, A: Physical 97-98, 428-433 (2002).
[CrossRef]

Lindlein, N.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Mabbott, L.

Malecki, K.

J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).

McDonald, J.

J. P. John and J. McDonald, "Spray etching of silicon in the HNO3/HF/H2O system," J. Electrochem. Soc. 140, 2622-2625 (1993).
[CrossRef]

McMullin, J. N.

Neville Conell, G. A.

Z. Popovic, R. Sprague, and G. A. Neville Conell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 23, 1281-1284 (1988).
[CrossRef]

Ngo, N. Q.

Nieradko, L.

J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).

Notten, P. H. L.

H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, "Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases," J. Electrochem. Soc. 133, 1217-1226 (1986).
[CrossRef]

P. H. L. Notten, J. J. Kelly, and H. K. Kuiken, "Etching profiles at resist edges II. Experimental confirmation of models using GaAs," J. Electrochem. Soc. 133, 1226-1232 (1986).
[CrossRef]

Pakkanen, T. T.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008).
[CrossRef]

Pan, L.

X. J. Shen, L. Pan, and L. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators, A: Physical 97-98, 428-433 (2002).
[CrossRef]

Pfund, J.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Pietarinen, J.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008).
[CrossRef]

J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
[CrossRef]

Popovic, Z.

Z. Popovic, R. Sprague, and G. A. Neville Conell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 23, 1281-1284 (1988).
[CrossRef]

Ravnkilde, J. T.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, "Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication," J. Micromech. Microeng. 15, 873-882 (2005).
[CrossRef]

Robbins, H.

H. Robbins and B. Schwartz, "Chemical etching of Silicon III," J. Electrochem. Soc. 108, 365-372 (1961).
[CrossRef]

H. Robbins and B. Schwartz, "Chemical etching of Silicon II," J. Electrochem. Soc. 107, 108-111 (1960).
[CrossRef]

H. Robbins and B. Schwartz, "Chemical etching of Silicon I," J. Electrochem. Soc. 106, 505-508 (1959).
[CrossRef]

Rosete-Aguilar, M.

Sanchez-Marin, F. J.

Sarro, P. M.

Schreiner, R.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Schwartz, B.

H. Robbins and B. Schwartz, "Chemical etching of Silicon III," J. Electrochem. Soc. 108, 365-372 (1961).
[CrossRef]

H. Robbins and B. Schwartz, "Chemical etching of Silicon II," J. Electrochem. Soc. 107, 108-111 (1960).
[CrossRef]

H. Robbins and B. Schwartz, "Chemical etching of Silicon I," J. Electrochem. Soc. 106, 505-508 (1959).
[CrossRef]

Schwider, J.

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Shen, X. J.

X. J. Shen, L. Pan, and L. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators, A: Physical 97-98, 428-433 (2002).
[CrossRef]

Shin, C. B.

C. B. Shin and D. J. Economou, "Forced and natural convection effects on the shape evolution of cavities during wet chemical etching," J. Electrochem. Soc. 138, 527-538 (1991).
[CrossRef]

Siitonen, S.

J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
[CrossRef]

Sprague, R.

Z. Popovic, R. Sprague, and G. A. Neville Conell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 23, 1281-1284 (1988).
[CrossRef]

Sun, Y.

Svetovoy, V. B.

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Experimental investigation of anisotropy in isotropic silicon etching," J. Micromech. Microeng. 17, 2344-2351 (2007).
[CrossRef]

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings," J. Electrochem. Soc. 153, C641-C647 (2006).
[CrossRef]

Tanaka, K.

Tossavainen, N.

J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
[CrossRef]

van Kan, J. A.

R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007).
[CrossRef]

Vdovin, G.

Wakaki, M.

Watt, F.

R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007).
[CrossRef]

Yang, S.

Yi, A. Y.

Yuan, X.-C.

Appl. Opt. (5)

J. Capillary Electrophor. (1)

J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).

J. Electrochem. Soc. (10)

J. P. John and J. McDonald, "Spray etching of silicon in the HNO3/HF/H2O system," J. Electrochem. Soc. 140, 2622-2625 (1993).
[CrossRef]

D. L. Klein and D. J. D'Stefan, "Controlled etching of silicon in the HF-HNO3 system," J. Electrochem. Soc. 109, 37-42 (2000).
[CrossRef]

H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, "Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases," J. Electrochem. Soc. 133, 1217-1226 (1986).
[CrossRef]

P. H. L. Notten, J. J. Kelly, and H. K. Kuiken, "Etching profiles at resist edges II. Experimental confirmation of models using GaAs," J. Electrochem. Soc. 133, 1226-1232 (1986).
[CrossRef]

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings," J. Electrochem. Soc. 153, C641-C647 (2006).
[CrossRef]

C. B. Shin and D. J. Economou, "Forced and natural convection effects on the shape evolution of cavities during wet chemical etching," J. Electrochem. Soc. 138, 527-538 (1991).
[CrossRef]

M. S. Kulkarni and H. F. Erk, "Acid based etching of silicon wafers: mass-transfer and kinetic effects," J. Electrochem. Soc. 147, 176-188 (2000).
[CrossRef]

H. Robbins and B. Schwartz, "Chemical etching of Silicon I," J. Electrochem. Soc. 106, 505-508 (1959).
[CrossRef]

H. Robbins and B. Schwartz, "Chemical etching of Silicon II," J. Electrochem. Soc. 107, 108-111 (1960).
[CrossRef]

H. Robbins and B. Schwartz, "Chemical etching of Silicon III," J. Electrochem. Soc. 108, 365-372 (1961).
[CrossRef]

J. Eng. Math. (1)

H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Experimental investigation of anisotropy in isotropic silicon etching," J. Micromech. Microeng. 17, 2344-2351 (2007).
[CrossRef]

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, "Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication," J. Micromech. Microeng. 15, 873-882 (2005).
[CrossRef]

Microelectron. Eng. (2)

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008).
[CrossRef]

J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Sens. Actuators, A: Physical (1)

X. J. Shen, L. Pan, and L. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators, A: Physical 97-98, 428-433 (2002).
[CrossRef]

Tech. Mess. (1)

J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002).
[CrossRef]

Technol. (1)

B.-K. Lee, D. S. Kim, and T. H. Kwom, "Replication of microlens arrays by injection molding," Microsyst.Technol. 10, 531-535 (2004).
[CrossRef]

Other (2)

H. P. Herzig, Micro-Optics. Elements, Systems and Applications (Taylor & Francis, 1997).

H. Ottevaere and H. Thienpont, "Refractive Optical Microlenses: an Introduction to Nomenclature and Characterization Techniques," in Encyclopedia of Modern Optics 4, 21-43 (Elsevier, Oxford, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Process steps used to fabricate the microlens molds.

Fig. 2.
Fig. 2.

Evolution of the mold shape for two different situations of isotropic etching: (a) mold diameter of 120 μm and etch time of 1 min; (b) mold diameter of 100 μm and etch time of 20 min.

Fig. 3.
Fig. 3.

The view of the Si wafer with etched molds.

Fig. 4.
Fig. 4.

SEM image of a mold with a diameter of 116.7 μm.

Fig. 5.
Fig. 5.

Ni shim fabricated from silicon mold for hot embossing and micro-injection molding.

Fig. 6.
Fig. 6.

SEM images of replicated microlenses, a) array of hot embossed microlenses with diameter of 262 μm and sag of 80 μm which mold aperture was 150 μm and b) array of UV-molded microlenses with diameter of 196 μm and sag of 77 μm which mold aperture was 80 μm.

Fig. 7.
Fig. 7.

Characterization of the molds (average values after measuring 5 items per matrix), a) depth of the <100> substrate etched during 45 min as a function of aperture size, b) diameter after 45 min etching as a function of aperture size.

Fig. 8.
Fig. 8.

Characterization of the Ni shim and Si molds depth and sag of the SK-9 and PMMA replicas (average values after measuring 5 items per matrix)

Fig. 9.
Fig. 9.

Optical characterization of the replicas (average values after measuring 5 items per matrix), a) peak-to-valley wavefront deformation, b) RMS wavefront deformation, c) focal length comparison between theoretical values (Th) and measured with a Trioptics spherometer (Sph) and a Mach-Zehnder interferometer (MZ) and d) NA comparison between theoretical values (Th) and measured with a Mach-Zehnder interferometer (MZ). All these parameters are plotted as a function of the mask aperture diameter.

Tables (1)

Tables Icon

Table 1. Uniformity of the silicon molds compared to the UV-molded replica

Metrics