Abstract

Along with the progress of image sensors in recent years, fix-focus cameras on mobile electronic devices do not fulfill consumer needs. With the size of mobile devices getting smaller and smaller, the displacement-to-thickness ratio is getting larger, and that makes mechanical motor systems difficult to be packaged inside cameras to achieve autofocus function. We propose a design using micromachined fluoropolymer deformable mirrors rather than traditional mechanical motor. With low color dispersion and adjustable power range of 20-diopter, deformable mirrors can be integrated into optical module and are well suitable for miniature optical auto-focus camera.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.newscaletech.com
  2. S. Kuiper and B. H. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
    [CrossRef]
  3. D. Wick and T. Martinez, "Adaptive optical zoom," Opt. Eng. 43, 8-9 (2004).
    [CrossRef]
  4. H . Kinoshita, K. Hoshino, K. Matsumoto, and I.Shimoyama, "A thin camera with a zoom function using reflective optics," Sens. Actuators A 128, 191-196 (2006).
    [CrossRef]
  5. M. Séchaud, "Wave-front compensation devices," Adaptive Optics, 1999.
    [CrossRef]
  6. N. Chern, P. Neow, and M. AngJr., "Practical issues in pixel-based autofocusing for machine vision," IEEE International Conference on Robotics 8 Automation, 2001

2006

H . Kinoshita, K. Hoshino, K. Matsumoto, and I.Shimoyama, "A thin camera with a zoom function using reflective optics," Sens. Actuators A 128, 191-196 (2006).
[CrossRef]

2004

S. Kuiper and B. H. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

D. Wick and T. Martinez, "Adaptive optical zoom," Opt. Eng. 43, 8-9 (2004).
[CrossRef]

Hendriks, B. H.

S. Kuiper and B. H. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Hoshino, K.

H . Kinoshita, K. Hoshino, K. Matsumoto, and I.Shimoyama, "A thin camera with a zoom function using reflective optics," Sens. Actuators A 128, 191-196 (2006).
[CrossRef]

Kinoshita, H

H . Kinoshita, K. Hoshino, K. Matsumoto, and I.Shimoyama, "A thin camera with a zoom function using reflective optics," Sens. Actuators A 128, 191-196 (2006).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Martinez, T.

D. Wick and T. Martinez, "Adaptive optical zoom," Opt. Eng. 43, 8-9 (2004).
[CrossRef]

Matsumoto, K.

H . Kinoshita, K. Hoshino, K. Matsumoto, and I.Shimoyama, "A thin camera with a zoom function using reflective optics," Sens. Actuators A 128, 191-196 (2006).
[CrossRef]

Shimoyama, K.

H . Kinoshita, K. Hoshino, K. Matsumoto, and I.Shimoyama, "A thin camera with a zoom function using reflective optics," Sens. Actuators A 128, 191-196 (2006).
[CrossRef]

Wick, D.

D. Wick and T. Martinez, "Adaptive optical zoom," Opt. Eng. 43, 8-9 (2004).
[CrossRef]

Appl. Phys. Lett.

S. Kuiper and B. H. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Opt. Eng.

D. Wick and T. Martinez, "Adaptive optical zoom," Opt. Eng. 43, 8-9 (2004).
[CrossRef]

Sens. Actuators A

H . Kinoshita, K. Hoshino, K. Matsumoto, and I.Shimoyama, "A thin camera with a zoom function using reflective optics," Sens. Actuators A 128, 191-196 (2006).
[CrossRef]

Other

M. Séchaud, "Wave-front compensation devices," Adaptive Optics, 1999.
[CrossRef]

N. Chern, P. Neow, and M. AngJr., "Practical issues in pixel-based autofocusing for machine vision," IEEE International Conference on Robotics 8 Automation, 2001

http://www.newscaletech.com

Supplementary Material (1)

» Media 1: MPG (4675 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic drawings of the thickness comparison between a refractive optical system and a reflective optical system.

Fig. 2.
Fig. 2.

Fabrication processes of a micromachined fluoropolymer deformable mirror.

Fig. 3.
Fig. 3.

(a). A schematic drawing of organic deformable mirror and (b) a photograph of the fabricated device.

Fig. 4.
Fig. 4.

(a). Optical power versus applied voltage, and (b) surface roughness of the deformable mirror.

Fig. 5.
Fig. 5.

The beam profile reflected from a fluoropolymer deformable mirror when the mirror is flat (not actuated) and curved (actuated for focusing light).

Fig. 6.
Fig. 6.

Auto-focus imaging system with reflective optics design for concept proof. imaging system in Fig. 6 because total internal reflection happens on the hypotenuse surface of the prism.

Fig. 7.
Fig. 7.

The focus value versus required optical power for different object locations.

Fig. 8.
Fig. 8.

Experiment setup for auto focusing system with a micromachined fluoropolymer deformable mirror.

Fig. 9.
Fig. 9.

(a). Image for system without actuating deformable mirror, and (b) image when performing auto-focusing, the mirror is actuated. Media 1.

Fig. 10.
Fig. 10.

Response time of a micromachined fluoropolymer deformable mirror.

Metrics