Abstract

We report experimental investigations on a two-section 16-GHz repetition rate InAs/GaAs quantum dot passively mode-locked laser. Near the threshold current, pseudo-periodic Q-switching with complex dynamics is exhibited. Mode-locking operation regimes characterized by different repetition rates and timing jitter levels are encountered up to twice the threshold current. Evolution of the RF spectrum and optical spectrum with current is compared. The different mode-locked regimes are shown to be associated with different spectral and temporal shapes, ranging from 1.3 to 6 ps. This point is discussed by introducing the existence of two different supermodes. Repetition rate evolution and timing jitter increase is attributed to the coupling between the dominant and the secondary supermodes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yamada, H. Ohta, and S. Nogiwa, "Jitter-free optical sampling system using passively modelocked fibre laser," Electron. Lett. 38, 1044-1045 (2002).
    [CrossRef]
  2. P. Delfyett, D. Hartman, and S. Ahmad, "Optical clock distribution using a mode-locked semiconductor laserdiode system," J. Lightwave Technol. 9, 1646-1649 (1991).
    [CrossRef]
  3. L. A. Jiang, E. P. Ippen, and H. Yokoyama, "Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission," Journal of optical and fiber communications reports 2, 1-31 (2005).
    [CrossRef]
  4. P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991).
    [CrossRef]
  5. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005).
    [CrossRef] [PubMed]
  6. A. Major, V. Barzda, P. A. E. Piunno, S. Musikhin, and U. J. Krull, "An extended cavity diode-pumped femtosecond Yb:KGW laser for applications in optical DNA sensor technology based on fluorescence lifetime measurements," Opt. Express 14, 5285-5294 (2006).
    [CrossRef] [PubMed]
  7. K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
    [CrossRef]
  8. E. P. Ippen, "Principles of passive mode locking," Appl. Phys. B 58, 159-170 (1994).
    [CrossRef]
  9. P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978).
    [CrossRef]
  10. X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
    [CrossRef]
  11. Q1. D. Bimberg, M. Kuntz, and M. Laemmlin, "Quantum dot photonic devices for lightwave communication," Appl. Phys. A 80, 1179-1182 (2005).
    [CrossRef]
  12. H. A. Haus, "Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 46, 3049-3058 (1975).
    [CrossRef]
  13. H. A. Haus, "A theory of forced mode locking," IEEE J. Quantum Electron. 11, 323-330 (1975).
    [CrossRef]
  14. H. A. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
    [CrossRef]
  15. J. Mulet and J. Moerk, "Analysis of timing jitter in external-cavity mode-locked semiconductor lasers," IEEE J. Quantum Electron. 42, 249-256 (2006).
    [CrossRef]
  16. M. T. Todaro, J.-P. Tourrenc, S. P. Hegarty, C. Kelleher, B. Corbett, G. Huyet, and J. G. McInerney, "Simultaneous achievement of narrow pulse width and low pulse-to-pulse timing jitter in 1.3?m passively mode-locked quantum-dot lasers," Opt. Lett. 31, 3107-3109 (2006).
    [CrossRef] [PubMed]
  17. E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, "Stability of the modelocking regime in quantum dot laser," in CLEO/Europe-IQEC (2007).
  18. M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
    [CrossRef]
  19. F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, "RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 20, 1405-1407 (2008).
    [CrossRef]
  20. O. McDuff and S. E. Harris, "Nonlinear theory of the internally loss-modulated laser," IEEE J. Quantum Electron. 3, 101-111 (1967).
    [CrossRef]
  21. H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulated lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
    [CrossRef]
  22. J. R. Fontana, "Theory of spontaneous mode locking in lasers using a circuit model," IEEE J. Quantum Electron. 8, 699-703 (1972).
    [CrossRef]
  23. J. A. Yeung, "Theory of active mode-locking of a semiconductor laser in an external cavity," IEEE J. Quantum Electron. 17, 398-404 (1981).
    [CrossRef]
  24. K. Y. Lau, "Narrow-Band Modulation of semiconductor lasers at millimeter wave frequencies (>100 GHz) by mode locking," IEEE J. Quantum Electron. 26, 250-261 (1990).
    [CrossRef]
  25. A. E. Siegman and D. J. Kuizenga, "FM and AM mode-locking of the Homogeneous Laser. I. Theory," IEEE J. Quantum Electron. 6, 2088-2091 (1970).
  26. H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. 11, 736-746 (1975).
    [CrossRef]
  27. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-GHz mode locked semiconductor lasers: experiment, modeling and applications," Proc. IEE Optoelectronics 147, 251-278 (2000).
    [CrossRef]
  28. H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993).
    [CrossRef]
  29. I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-Passive and active mode locking up to millimeter wave ferquencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
    [CrossRef]
  30. R. Adler, "A study of locking phenomena in oscillators," in Proceedings IRE, vol. 34, pp. 351-356 (1946).
    [CrossRef]
  31. K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
    [CrossRef]

2008

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, "RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 20, 1405-1407 (2008).
[CrossRef]

2007

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

2006

2005

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005).
[CrossRef] [PubMed]

Q1. D. Bimberg, M. Kuntz, and M. Laemmlin, "Quantum dot photonic devices for lightwave communication," Appl. Phys. A 80, 1179-1182 (2005).
[CrossRef]

2004

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

2002

N. Yamada, H. Ohta, and S. Nogiwa, "Jitter-free optical sampling system using passively modelocked fibre laser," Electron. Lett. 38, 1044-1045 (2002).
[CrossRef]

2001

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

1994

E. P. Ippen, "Principles of passive mode locking," Appl. Phys. B 58, 159-170 (1994).
[CrossRef]

1993

H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993).
[CrossRef]

I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-Passive and active mode locking up to millimeter wave ferquencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
[CrossRef]

1991

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

P. Delfyett, D. Hartman, and S. Ahmad, "Optical clock distribution using a mode-locked semiconductor laserdiode system," J. Lightwave Technol. 9, 1646-1649 (1991).
[CrossRef]

P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991).
[CrossRef]

1990

K. Y. Lau, "Narrow-Band Modulation of semiconductor lasers at millimeter wave frequencies (>100 GHz) by mode locking," IEEE J. Quantum Electron. 26, 250-261 (1990).
[CrossRef]

1981

J. A. Yeung, "Theory of active mode-locking of a semiconductor laser in an external cavity," IEEE J. Quantum Electron. 17, 398-404 (1981).
[CrossRef]

1978

P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978).
[CrossRef]

1976

H. A. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
[CrossRef]

1975

H. A. Haus, "Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

H. A. Haus, "A theory of forced mode locking," IEEE J. Quantum Electron. 11, 323-330 (1975).
[CrossRef]

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. 11, 736-746 (1975).
[CrossRef]

1972

J. R. Fontana, "Theory of spontaneous mode locking in lasers using a circuit model," IEEE J. Quantum Electron. 8, 699-703 (1972).
[CrossRef]

1970

A. E. Siegman and D. J. Kuizenga, "FM and AM mode-locking of the Homogeneous Laser. I. Theory," IEEE J. Quantum Electron. 6, 2088-2091 (1970).

1968

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulated lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

1967

O. McDuff and S. E. Harris, "Nonlinear theory of the internally loss-modulated laser," IEEE J. Quantum Electron. 3, 101-111 (1967).
[CrossRef]

Ahmad, S.

P. Delfyett, D. Hartman, and S. Ahmad, "Optical clock distribution using a mode-locked semiconductor laserdiode system," J. Lightwave Technol. 9, 1646-1649 (1991).
[CrossRef]

Anantathanasarn, S.

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

Barnsley, P. E.

P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991).
[CrossRef]

Barzda, V.

Bente, E. A.

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

Bimberg, D.

Q1. D. Bimberg, M. Kuntz, and M. Laemmlin, "Quantum dot photonic devices for lightwave communication," Appl. Phys. A 80, 1179-1182 (2005).
[CrossRef]

Brehm, M.

Cheng, J.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Corbett, B.

Delfyett, P.

P. Delfyett, D. Hartman, and S. Ahmad, "Optical clock distribution using a mode-locked semiconductor laserdiode system," J. Lightwave Technol. 9, 1646-1649 (1991).
[CrossRef]

Fontana, J. R.

J. R. Fontana, "Theory of spontaneous mode locking in lasers using a circuit model," IEEE J. Quantum Electron. 8, 699-703 (1972).
[CrossRef]

Glasser, L. A.

P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978).
[CrossRef]

Haken, H.

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulated lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

Harris, S. E.

O. McDuff and S. E. Harris, "Nonlinear theory of the internally loss-modulated laser," IEEE J. Quantum Electron. 3, 101-111 (1967).
[CrossRef]

Hartman, D.

P. Delfyett, D. Hartman, and S. Ahmad, "Optical clock distribution using a mode-locked semiconductor laserdiode system," J. Lightwave Technol. 9, 1646-1649 (1991).
[CrossRef]

Haus, H. A.

H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993).
[CrossRef]

P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978).
[CrossRef]

H. A. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
[CrossRef]

H. A. Haus, "Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

H. A. Haus, "A theory of forced mode locking," IEEE J. Quantum Electron. 11, 323-330 (1975).
[CrossRef]

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. 11, 736-746 (1975).
[CrossRef]

Heck, M. J. R.

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

Hegarty, S. P.

Ho, P. T.

P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978).
[CrossRef]

Huang, X.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Huyet, G.

Ippen, E. P.

E. P. Ippen, "Principles of passive mode locking," Appl. Phys. B 58, 159-170 (1994).
[CrossRef]

P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978).
[CrossRef]

Kéfélian, F.

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, "RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 20, 1405-1407 (2008).
[CrossRef]

Keilmann, F.

Kelleher, C.

Kim, I.

I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-Passive and active mode locking up to millimeter wave ferquencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
[CrossRef]

Krull, U. J.

Kuizenga, D. J.

A. E. Siegman and D. J. Kuizenga, "FM and AM mode-locking of the Homogeneous Laser. I. Theory," IEEE J. Quantum Electron. 6, 2088-2091 (1970).

Kuntz, M.

Q1. D. Bimberg, M. Kuntz, and M. Laemmlin, "Quantum dot photonic devices for lightwave communication," Appl. Phys. A 80, 1179-1182 (2005).
[CrossRef]

Laemmlin, M.

Q1. D. Bimberg, M. Kuntz, and M. Laemmlin, "Quantum dot photonic devices for lightwave communication," Appl. Phys. A 80, 1179-1182 (2005).
[CrossRef]

Lau, K. Y.

I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-Passive and active mode locking up to millimeter wave ferquencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
[CrossRef]

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

K. Y. Lau, "Narrow-Band Modulation of semiconductor lasers at millimeter wave frequencies (>100 GHz) by mode locking," IEEE J. Quantum Electron. 26, 250-261 (1990).
[CrossRef]

Lester, L. F.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Li, H.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Major, A.

Malloy, K. J.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

McDuff, O.

O. McDuff and S. E. Harris, "Nonlinear theory of the internally loss-modulated laser," IEEE J. Quantum Electron. 3, 101-111 (1967).
[CrossRef]

McInerney, J.

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, "RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 20, 1405-1407 (2008).
[CrossRef]

McInerney, J. G.

Mecozzi, A.

H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993).
[CrossRef]

Moerk, J.

J. Mulet and J. Moerk, "Analysis of timing jitter in external-cavity mode-locked semiconductor lasers," IEEE J. Quantum Electron. 42, 249-256 (2006).
[CrossRef]

Mulet, J.

J. Mulet and J. Moerk, "Analysis of timing jitter in external-cavity mode-locked semiconductor lasers," IEEE J. Quantum Electron. 42, 249-256 (2006).
[CrossRef]

Musikhin, S.

Nogiwa, S.

N. Yamada, H. Ohta, and S. Nogiwa, "Jitter-free optical sampling system using passively modelocked fibre laser," Electron. Lett. 38, 1044-1045 (2002).
[CrossRef]

Notzel, R.

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

O’Donoghue, S.

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, "RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 20, 1405-1407 (2008).
[CrossRef]

Oei, Y.-S.

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

Ohta, H.

N. Yamada, H. Ohta, and S. Nogiwa, "Jitter-free optical sampling system using passively modelocked fibre laser," Electron. Lett. 38, 1044-1045 (2002).
[CrossRef]

Paslaski, J.

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

Pauthier, M.

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulated lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

Piunno, P. A. E.

Schliesser, A.

Siegman, A. E.

A. E. Siegman and D. J. Kuizenga, "FM and AM mode-locking of the Homogeneous Laser. I. Theory," IEEE J. Quantum Electron. 6, 2088-2091 (1970).

Smalbrugge, B.

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

Smit, M. K.

M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007).
[CrossRef]

Spirit, D. M.

P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991).
[CrossRef]

Stintz, A.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

Todaro, M. T.

Tourrenc, J.-P.

van der Weide, D.

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

Wickens, G. E.

P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991).
[CrossRef]

Wickes, H. J.

P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991).
[CrossRef]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

Yamada, N.

N. Yamada, H. Ohta, and S. Nogiwa, "Jitter-free optical sampling system using passively modelocked fibre laser," Electron. Lett. 38, 1044-1045 (2002).
[CrossRef]

Yeung, J. A.

J. A. Yeung, "Theory of active mode-locking of a semiconductor laser in an external cavity," IEEE J. Quantum Electron. 17, 398-404 (1981).
[CrossRef]

Appl. Phys. A

Q1. D. Bimberg, M. Kuntz, and M. Laemmlin, "Quantum dot photonic devices for lightwave communication," Appl. Phys. A 80, 1179-1182 (2005).
[CrossRef]

Appl. Phys. B

E. P. Ippen, "Principles of passive mode locking," Appl. Phys. B 58, 159-170 (1994).
[CrossRef]

Appl. Phys. Lett.

P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978).
[CrossRef]

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Electron. Lett.

N. Yamada, H. Ohta, and S. Nogiwa, "Jitter-free optical sampling system using passively modelocked fibre laser," Electron. Lett. 38, 1044-1045 (2002).
[CrossRef]

IEEE J. Quantum Electron.

O. McDuff and S. E. Harris, "Nonlinear theory of the internally loss-modulated laser," IEEE J. Quantum Electron. 3, 101-111 (1967).
[CrossRef]

H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulated lasers," IEEE J. Quantum Electron. 4, 454-459 (1968).
[CrossRef]

J. R. Fontana, "Theory of spontaneous mode locking in lasers using a circuit model," IEEE J. Quantum Electron. 8, 699-703 (1972).
[CrossRef]

J. A. Yeung, "Theory of active mode-locking of a semiconductor laser in an external cavity," IEEE J. Quantum Electron. 17, 398-404 (1981).
[CrossRef]

K. Y. Lau, "Narrow-Band Modulation of semiconductor lasers at millimeter wave frequencies (>100 GHz) by mode locking," IEEE J. Quantum Electron. 26, 250-261 (1990).
[CrossRef]

A. E. Siegman and D. J. Kuizenga, "FM and AM mode-locking of the Homogeneous Laser. I. Theory," IEEE J. Quantum Electron. 6, 2088-2091 (1970).

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. 11, 736-746 (1975).
[CrossRef]

H. A. Haus, "A theory of forced mode locking," IEEE J. Quantum Electron. 11, 323-330 (1975).
[CrossRef]

H. A. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
[CrossRef]

J. Mulet and J. Moerk, "Analysis of timing jitter in external-cavity mode-locked semiconductor lasers," IEEE J. Quantum Electron. 42, 249-256 (2006).
[CrossRef]

H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993).
[CrossRef]

I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-Passive and active mode locking up to millimeter wave ferquencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, "RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 20, 1405-1407 (2008).
[CrossRef]

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991).
[CrossRef]

J. Appl. Phys.

H. A. Haus, "Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

J. Lightwave Technol.

P. Delfyett, D. Hartman, and S. Ahmad, "Optical clock distribution using a mode-locked semiconductor laserdiode system," J. Lightwave Technol. 9, 1646-1649 (1991).
[CrossRef]

New J. Phys.

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, "Stability of the modelocking regime in quantum dot laser," in CLEO/Europe-IQEC (2007).

R. Adler, "A study of locking phenomena in oscillators," in Proceedings IRE, vol. 34, pp. 351-356 (1946).
[CrossRef]

L. A. Jiang, E. P. Ippen, and H. Yokoyama, "Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission," Journal of optical and fiber communications reports 2, 1-31 (2005).
[CrossRef]

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-GHz mode locked semiconductor lasers: experiment, modeling and applications," Proc. IEE Optoelectronics 147, 251-278 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Average optical power versus gain current for different absorber voltage (a) and threshold currents as a function of the absorber voltage (b)

Fig. 2.
Fig. 2.

Photocurrent temporal dynamics closed to the lasing treshold

Fig. 3.
Fig. 3.

RF spectrum in dB scale as a function of the gain current, Uabs =-2.4 V

Fig. 4.
Fig. 4.

RF spectrum in dB scale as a function of the gain current, Uabs =-2.3 V

Fig. 5.
Fig. 5.

Optical spectrum as a function of the gain current, Uabs =-2.4 V

Fig. 6.
Fig. 6.

Pulse autocorrelation for different gain currents in linear (left) and logarithmic (right) scales for Uabs =-2.4 V.

Fig. 7.
Fig. 7.

Experimental pulse autocorrelation and fit for different gain currents and fitting curves for Uabs =-2.4 V. a) is a square hyperbolic secant autocorrelation fit, b) is a a square hyperbolic secant autocorrelation fit (red) and a symmetric two-sided inverse exponential autocorrelation fit (blue), c) is a symmetric two-sided inverse exponential autocorrelation fit and d) is a symmetric two-sided inverse exponential autocorrelation fit on a Gaussian pedestal

Fig. 8.
Fig. 8.

Pulse and spectrum full width at half maximum as a function of the gain current

Metrics