Abstract

Individual nanoparticles in aqueous solution are observed to be attracted to and orbit within the evanescent sensing ring of a Whispering Gallery Mode micro-sensor with only microwatts of driving power. This Carousel trap, caused by attractive optical gradient forces, interfacial interactions, and the circulating momentum flux, considerably enhances the rate of transport to the sensing region, thereby overcoming limitations posed by diffusion on such small area detectors. Resonance frequency fluctuations, caused by the radial Brownian motion of the nanoparticle, reveal the radial trapping potential and the nanoparticle size. Since the attractive forces draw particles to the highest evanescent intensity at the surface, binding steps are found to be uniform.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235,1517-1520 (1987).
    [CrossRef] [PubMed]
  2. F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
    [CrossRef] [PubMed]
  3. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  4. T. M. Squires, R. J. Messinger, and S. R. Manalis, "Making it stick: convection, reaction and diffusion in surface-based biosensors," Nature Biotechnol. 26, 417-426 (2008).
    [CrossRef]
  5. J. C. Knight, G. Chung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131(1997).
    [CrossRef] [PubMed]
  6. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
    [CrossRef]
  7. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28,272-274 (2003).
    [CrossRef] [PubMed]
  8. L ? (?/4?)(ns2-nm2)-1/2, D = 2nm2 (2ns)1/2(nnp2 - nm2)/(ns2 - nm2)(nnp2 + 2nm2), where ns, nm, and nnp are the refractive indices of the microsphere (1.45), aqueous medium (1.33), and nanoparticle (1.5 for virus and 1.59 for polystyrene; D = 1.50 and 2.26 respectively).
  9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11,288-290 (1986).
    [CrossRef] [PubMed]
  10. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
    [CrossRef] [PubMed]
  11. J. N. Izraelachvili, Intermolecular And Surfaces Forces. 173-191 (Academic Press, Inc., San Diego, CA, 1987).
  12. I. Teraoka and S. Arnold, "Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications," J. Opt. Soc. Am. B 23,1381-1389 (2006).
    [CrossRef]
  13. F. Vollmer, S. Arnold, and D. Keng, "Single Virus Detection from the Reactive Shift of a Whispering-Gallery Mode," Proc. Natl. Acad. Sci. USA 105,20701-20704 (2008).
    [CrossRef] [PubMed]
  14. The translation from a size to a mass spectrum requires knowledge of mass density.
  15. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
    [CrossRef] [PubMed]

2009 (1)

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

2008 (4)

F. Vollmer, S. Arnold, and D. Keng, "Single Virus Detection from the Reactive Shift of a Whispering-Gallery Mode," Proc. Natl. Acad. Sci. USA 105,20701-20704 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

T. M. Squires, R. J. Messinger, and S. R. Manalis, "Making it stick: convection, reaction and diffusion in surface-based biosensors," Nature Biotechnol. 26, 417-426 (2008).
[CrossRef]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
[CrossRef] [PubMed]

2007 (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

2003 (1)

1997 (1)

1987 (1)

A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235,1517-1520 (1987).
[CrossRef] [PubMed]

1986 (1)

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
[CrossRef] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, "Single Virus Detection from the Reactive Shift of a Whispering-Gallery Mode," Proc. Natl. Acad. Sci. USA 105,20701-20704 (2008).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, "Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications," J. Opt. Soc. Am. B 23,1381-1389 (2006).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28,272-274 (2003).
[CrossRef] [PubMed]

Ashkin, A.

Birks, T. A.

Bjorkholm, J. E.

Carmon, T.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

Chu, S.

Chung, G.

Dziedzic, J. M.

Erickson, D.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Grier, D. G.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
[CrossRef] [PubMed]

Holler, S.

Jacques, F.

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, "Single Virus Detection from the Reactive Shift of a Whispering-Gallery Mode," Proc. Natl. Acad. Sci. USA 105,20701-20704 (2008).
[CrossRef] [PubMed]

Khoshsima, M.

Klug, M.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

Knight, J. C.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Lipson, M.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

Manalis, S. R.

T. M. Squires, R. J. Messinger, and S. R. Manalis, "Making it stick: convection, reaction and diffusion in surface-based biosensors," Nature Biotechnol. 26, 417-426 (2008).
[CrossRef]

Messinger, R. J.

T. M. Squires, R. J. Messinger, and S. R. Manalis, "Making it stick: convection, reaction and diffusion in surface-based biosensors," Nature Biotechnol. 26, 417-426 (2008).
[CrossRef]

Min, B.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

Moore, S. D.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
[CrossRef] [PubMed]

Schmidt, B. S.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

Spillane, S. M.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

Squires, T. M.

T. M. Squires, R. J. Messinger, and S. R. Manalis, "Making it stick: convection, reaction and diffusion in surface-based biosensors," Nature Biotechnol. 26, 417-426 (2008).
[CrossRef]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
[CrossRef] [PubMed]

Teraoka, I.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

Vollmer, F.

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, "Single Virus Detection from the Reactive Shift of a Whispering-Gallery Mode," Proc. Natl. Acad. Sci. USA 105,20701-20704 (2008).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28,272-274 (2003).
[CrossRef] [PubMed]

Yang, H. J.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

Yang, L.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, "Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process," Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009)
[CrossRef] [PubMed]

Nature Biotechnol. (1)

T. M. Squires, R. J. Messinger, and S. R. Manalis, "Making it stick: convection, reaction and diffusion in surface-based biosensors," Nature Biotechnol. 26, 417-426 (2008).
[CrossRef]

Nature Methods (1)

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100,013602 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

F. Vollmer, S. Arnold, and D. Keng, "Single Virus Detection from the Reactive Shift of a Whispering-Gallery Mode," Proc. Natl. Acad. Sci. USA 105,20701-20704 (2008).
[CrossRef] [PubMed]

Science (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235,1517-1520 (1987).
[CrossRef] [PubMed]

Other (3)

J. N. Izraelachvili, Intermolecular And Surfaces Forces. 173-191 (Academic Press, Inc., San Diego, CA, 1987).

L ? (?/4?)(ns2-nm2)-1/2, D = 2nm2 (2ns)1/2(nnp2 - nm2)/(ns2 - nm2)(nnp2 + 2nm2), where ns, nm, and nnp are the refractive indices of the microsphere (1.45), aqueous medium (1.33), and nanoparticle (1.5 for virus and 1.59 for polystyrene; D = 1.50 and 2.26 respectively).

The translation from a size to a mass spectrum requires knowledge of mass density.

Supplementary Material (1)

» Media 1: MOV (3087 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

WGM-Carousel-Trap. (a) WGM excited in a microsphere (radius R = 53 μm) with Q = 1.2×106 by a 1060nm tunable laser using fiber-evanescent-coupling. The resonance wavelength is tracked from a dip in the transmitted light (PD). An elastic scattering image shows a polystyrene particle (radius a = 375 nm) trapped and circumnavigating at 2.6 μm/s using a drive power of 32 μW. (b) A particle is sensed through resonance wavelength fluctuations Δλr that identify its size/mass. These fluctuations are recorded from before the particle enters the Carousel-trap until after it escapes ≈ 6 min later.

Fig. 2
Fig. 2

(Media 1) This is a sped-up video (16× real time) of a single nanoparticle (a = 375 nm) being trapped and propelled by the WGM momentum flux. The fiber is coupled to the microsphere (R = 48 µm) by contact slightly off the equator on the backside. The WGM has Q = 1.5 ×106, and is driven with a power P = 25 μW. Light travels in the fiber from right to left (WGM scatter can be seen on the left edge of the microsphere). The trapped particle is observed through elastic scattering as a bright spot in front and in back of the microsphere. The ring pattern around the bright spot is caused by diffraction by the microscope objective. The nanoparticle is trapped, and propelled for just over two revolutions with a period of 140s before escaping. The particle appears to move faster on the backside due the transverse magnification in the microsphere image.

Fig. 3.
Fig. 3.

Separation histogram and trapping potential. (a) separation histogram collected from a single tapping event of a polystyrene (PS) particle (from mean radius <a> =140 nm hydrosol). The WGM with Q = 7.3×105 was excited with P = 233 μW at λ ≈ 1060 nm in a microsphere with R = 44 μm. The statistics were comprised of 1000 points. (b) Potential plot arrived at from the histogram in (a). These points are fit to a sum of two potentials (in red).

Fig. 4.
Fig. 4.

Particle velocity as a function of drive power P. A nanoparticle of radius a = 375 nm was trapped in a Carousel of a microsphere with R = 45 μm and Q = 1.5 × 106. The power was gradually reduced over a period of 1200 s. Upon reaching 7.3 μW the particle escapes within 10 s, as seen by imaging and through the cessation of wavelength fluctuations. The upper horizontal scale is calculated from Eq. (3).

Fig. 5.
Fig. 5.

Particle separation histograms for two different NaCl concentrations (0.5 mM and 5 mM). Note that the particle is closer to the surface for higher salt concentration, indicated by the peak position of the statistics.

Fig. 6.
Fig. 6.

(a) First three binding steps of nanoparticles (a = 375 nm) on a microsphere with R = 45 μm and P = 150 μW, Q = 2×105, Note the uniformity in step height. Red dash separation is set to 0.45 pm. (b) Image of a = 140 nm particles trapped and bound in the Carousel orbit, R = 39 μm.

Tables (1)

Tables Icon

Table 1. Nanoparticle Sizing by WGM Carousel. Size determined for each of four Carousel trapped nanoparticles from their delimited wavelength shift (Δλr )max using Eq. (5) (far right) as compared with the mean size given by the manufacturer for the associated hydrosol <a>.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ r / λ r = W p / W c
Δ λ r ( h + a ) Δ λ r ( a ) exp [ ( h + a ) / L ] exp [ a / L ] = exp [ h / L ] .
U p ( 0 ) = ( Δ λ r ) max PQ / ( 2 πc ) ,
P min k B T ( 2 πc ) / [ Q ( Δ λ r ) max ] .
( Δ λ r ) max D λ r 1 / 2 R 5 / 2 a 3 e a / L

Metrics