Abstract

We propose a new way to realize a microfiber optical resonator by implementing the topology of a reef knot using two microfibers. We describe how this structure, which includes 4 ports and can serve as an add-drop filter, can be fabricated. Resonances in an all-silica reef knot are measured and good fits are obtained from a simple resonator model. We also show the feasibility of assembling a hybrid silica-chalcogenide reef knot structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hodgson and H. Weber, Optical Resonators (Springer Verlag, Berlin, 1997).
  2. K. Vahala, Optical Microcavities (World Scientific, Singapore 2004).
    [CrossRef]
  3. J. Heebner, T. Ibrahim, and R. Grover, Optical Microesonators Theory, Fabrication, and Applications (Springer Verlag, London, 2008).
  4. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
    [CrossRef] [PubMed]
  5. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The microfiber loop resonator: Theory, experiment, and application," J. Lightwave Technol. 24, 242-250 (2006).
    [CrossRef]
  6. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
    [CrossRef]
  7. M. Sumetsky, "Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators," J. Lightwave Technol. 2621-27 (2008).
    [CrossRef]
  8. S. S. Wang, Z. F. Hu, Y. H. Li, and L. Tong, "All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors," Opt. Lett. 34,253-255 (2009).
    [CrossRef] [PubMed]
  9. X. Jiang, Y. Chen, G. Vienne, and L. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 321710-2 (2007).
    [CrossRef] [PubMed]
  10. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-82.
    [CrossRef] [PubMed]
  11. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
    [CrossRef]
  12. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-16-10324.
    [CrossRef] [PubMed]
  13. G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
    [CrossRef]
  14. G. Vienne, A. Coillet, P. Grelu, C. Ledier, J. Troles, M. El Amraoui, J. -C. Jules, F. Smektala, and L. Tong, "Reef Knot Microfiber Resonators," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper SaM2.
  15. D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
    [CrossRef]
  16. O. Schwelb, "Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters - A Tutorial Overview," J. Lightwave Technol. 22,1380-1394 (2004).
    [CrossRef]
  17. P. Pal and W. H. Knox, "Fabrication and Characterization of Fused Microfiber Resonators," IEEE Photon. Technol. Lett (to be published).
  18. G. Vienne, Y. Li, and L. Tong, "Microfiber Resonator in Polymer Matrix," IEICE Trans. Electron., E 90-C,415-421 (2007).
    [CrossRef]
  19. F. Xu and G. Brambilla, "Embedding optical microfiber coil resonators in Teflon," Opt. Lett. 32,2164-2166 (2007).
    [CrossRef] [PubMed]
  20. G. Vienne, Y. Li, X. Jiang, and L. Tong, "Effect of host polymer on microring resonators," IEEE Photon. Technol. Lett. 191386-8 (2007).
    [CrossRef]

2009 (2)

S. S. Wang, Z. F. Hu, Y. H. Li, and L. Tong, "All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors," Opt. Lett. 34,253-255 (2009).
[CrossRef] [PubMed]

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
[CrossRef]

2008 (3)

G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

M. Sumetsky, "Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators," J. Lightwave Technol. 2621-27 (2008).
[CrossRef]

2007 (5)

2006 (3)

2004 (1)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Aggarwal, I. D.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Brambilla, G.

Chen, Y.

Dai, D.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
[CrossRef]

DiGiovanni, D. J.

Dulashko, Y.

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Eggleton, B. J.

Fini, J. M.

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Fu, L. B.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Grelu, Ph.

G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
[CrossRef]

Guo, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
[CrossRef]

Hale, A.

He, J.

He, S.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Hu, L.

Hu, Z. F.

Jiang, X.

X. Jiang, Y. Chen, G. Vienne, and L. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 321710-2 (2007).
[CrossRef] [PubMed]

G. Vienne, Y. Li, X. Jiang, and L. Tong, "Effect of host polymer on microring resonators," IEEE Photon. Technol. Lett. 191386-8 (2007).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
[CrossRef]

Knox, W. H.

P. Pal and W. H. Knox, "Fabrication and Characterization of Fused Microfiber Resonators," IEEE Photon. Technol. Lett (to be published).

Lamont, M. R. E.

Li, Y.

G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
[CrossRef]

G. Vienne, Y. Li, and L. Tong, "Microfiber Resonator in Polymer Matrix," IEICE Trans. Electron., E 90-C,415-421 (2007).
[CrossRef]

G. Vienne, Y. Li, X. Jiang, and L. Tong, "Effect of host polymer on microring resonators," IEEE Photon. Technol. Lett. 191386-8 (2007).
[CrossRef]

Li, Y. H.

Lou, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-82.
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Mägi, E. C.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Nguyen, H. C.

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Pal, P.

P. Pal and W. H. Knox, "Fabrication and Characterization of Fused Microfiber Resonators," IEEE Photon. Technol. Lett (to be published).

Pan, X.

G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
[CrossRef]

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Qiu, J.

Sanghera, J. S.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Schwelb, O.

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Shen, Y.

Sheng, Z.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
[CrossRef]

Sumetsky, M.

Tong, L.

S. S. Wang, Z. F. Hu, Y. H. Li, and L. Tong, "All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors," Opt. Lett. 34,253-255 (2009).
[CrossRef] [PubMed]

G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
[CrossRef]

G. Vienne, Y. Li, and L. Tong, "Microfiber Resonator in Polymer Matrix," IEICE Trans. Electron., E 90-C,415-421 (2007).
[CrossRef]

X. Jiang, Y. Chen, G. Vienne, and L. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 321710-2 (2007).
[CrossRef] [PubMed]

G. Vienne, Y. Li, X. Jiang, and L. Tong, "Effect of host polymer on microring resonators," IEEE Photon. Technol. Lett. 191386-8 (2007).
[CrossRef]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-82.
[CrossRef] [PubMed]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Tsao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
[CrossRef]

Vienne, G.

G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
[CrossRef]

G. Vienne, Y. Li, X. Jiang, and L. Tong, "Effect of host polymer on microring resonators," IEEE Photon. Technol. Lett. 191386-8 (2007).
[CrossRef]

G. Vienne, Y. Li, and L. Tong, "Microfiber Resonator in Polymer Matrix," IEICE Trans. Electron., E 90-C,415-421 (2007).
[CrossRef]

X. Jiang, Y. Chen, G. Vienne, and L. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 321710-2 (2007).
[CrossRef] [PubMed]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
[CrossRef]

Wang, S. S.

Xu, F.

Yang, B.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
[CrossRef]

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
[CrossRef]

Yang, L.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
[CrossRef]

Yang, Q.

Ye, Z.

Yeom, D. I.

Zhang, J.

Appl. Phys. Lett. (1)

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88223501(2006).
[CrossRef]

E (1)

G. Vienne, Y. Li, and L. Tong, "Microfiber Resonator in Polymer Matrix," IEICE Trans. Electron., E 90-C,415-421 (2007).
[CrossRef]

IEEE Photon. Technol. Lett (1)

P. Pal and W. H. Knox, "Fabrication and Characterization of Fused Microfiber Resonators," IEEE Photon. Technol. Lett (to be published).

IEEE Photon. Technol. Lett. (2)

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photon. Technol. Lett. 21,254-256 (2009).
[CrossRef]

G. Vienne, Y. Li, X. Jiang, and L. Tong, "Effect of host polymer on microring resonators," IEEE Photon. Technol. Lett. 191386-8 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Cryst. Solids 354, 462-467 (2008).
[CrossRef]

J. Opt. A (1)

G. Vienne, Ph. Grelu, X. Pan, Y. Li, and L. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A 10, 025303 (2008).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-9 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Other (4)

N. Hodgson and H. Weber, Optical Resonators (Springer Verlag, Berlin, 1997).

K. Vahala, Optical Microcavities (World Scientific, Singapore 2004).
[CrossRef]

J. Heebner, T. Ibrahim, and R. Grover, Optical Microesonators Theory, Fabrication, and Applications (Springer Verlag, London, 2008).

G. Vienne, A. Coillet, P. Grelu, C. Ledier, J. Troles, M. El Amraoui, J. -C. Jules, F. Smektala, and L. Tong, "Reef Knot Microfiber Resonators," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper SaM2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic showing the different steps for the fabrication of a microfiber reef knot resonator: (a) Drawing of a biconical taper from a standard fiber; (b) Shaping of the biconical taper into a U-shape; (c) Drawing of a microfiber from a standard fiber; (d) Wrapping of the microfiber around the U-shaped biconical taper to form a reef knot.

Fig. 2.
Fig. 2.

Photograph of the setup used to fabricate a microfiber reef knot.

Fig. 3.
Fig. 3.

Photographs of fabricated microfiber reef knots: (a) All-silica reef knot made of microfibers 1.2±0.2 μm and 1.5±0.2 μm in diameter; (b) Silica-chalcogenide hybrid reef knot. The silica microfiber is 7 μm in diameter and appears whitish. The chalcogenide microfiber is 5 μm in diameter and appears brownish.

Fig. 4.
Fig. 4.

Schematic of an add-drop filter with relevant parameters for modeling. For characterization the input port is connected to a supercontinuum source (SC), and the through and drop ports are connected to an optical spectrum analyzer (OSA).

Fig. 5.
Fig. 5.

Example of transmission spectra measured from the through and drop ports of the all-silica microfiber reef knot shown in Fig. 3(a) (colored lines) together with the fit curves (black lines). The fit parameters are K1 = 20.8%, K2 = 46.2%, A = 0.46 and D = 450 μm. See text for details on the model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ E 1 = A ( 1 K 1 E in + j K 1 E 4 ) E through = A ( j K 1 E in + 1 K 1 E 4 ) E 2 = E 1 e j ϕ 12 E 3 = j A K 2 E 2 E 4 = E 3 e j ϕ 34 E drop = A ( 1 K 2 ) E 2
P drop P in = A 2 ( 1 K 1 ) ( 1 K 2 ) 1 + 2 A K 1 K 2 cos ( ϕ ) + A 2 K 1 K 2
P through P in = A K 1 + 2 A K 1 K 2 cos ( ϕ ) + A 2 K 2 1 + 2 A K 1 K 2 cos ( ϕ ) + A 2 K 1 K 2

Metrics