Abstract

We describe open-loop and closed-loop multiplexed force measurements using holographic optical tweezers. We quantify the performance of our novel video-based control system in a driven suspension of colloidal particles. We demonstrate our system’s abilities with the measurement of the mechanical coupling between Aplysia bag cell growth cones and beads functionalized with the neuronal cell adhesion molecule, apCAM. We show that cells form linkages which couple beads to the underlying cytoskeleton. These linkages are intermittent, stochastic and heterogeneous across beads distributed near the leading edge of a single growth cone.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Lin and P. Forscher, "Growth cone advance is inversely proportional to retrograde F-actin flow," Neuron 14, 763-771 (1995).
    [CrossRef] [PubMed]
  2. B. Geiger, J. P. Spatz, and A. D. Bershadsky, "Environmental sensing through focal adhesions," Nat. Rev. Mol. Cell Biol. 10, 21-33 (2009).
    [CrossRef] [PubMed]
  3. B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, "High resolution traction force microscopy based on experimental and computational advances," Biophys. J. 94, 207-220 (2008).
    [CrossRef]
  4. C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, "Cell movement is guided by the rigidity of the substrate," Biophys. J. 79, 144-152 (2000).
    [CrossRef] [PubMed]
  5. L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
    [CrossRef] [PubMed]
  6. D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, "Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages," Cell 88, 39-48 (1997).
    [CrossRef] [PubMed]
  7. M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
    [CrossRef]
  8. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
    [CrossRef] [PubMed]
  9. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, "Multi force optical tweezers to generate gradients of forces," Opt. Express 12, 3906-3910 (2004).
    [CrossRef] [PubMed]
  10. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
    [CrossRef]
  11. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional Optical Tweezers Using Computer-Generated Holograms," Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  12. A. van der Horst and N. R. Forde, "Calibration of dynamic holographic optical tweezers for force measurements on biomaterials," Opt. Express 16, 20987-21003 (2008).
    [CrossRef] [PubMed]
  13. S. C. Chapin, V. Germain, and E. R. Dufresne, "Automated trapping, assembly, and sorting with holographic optical tweezers," Opt. Express 14, 13095-13100 (2006).
    [CrossRef] [PubMed]
  14. J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
    [CrossRef]
  15. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005).
    [CrossRef] [PubMed]
  16. W. P. Wong and K. Halvorsen, "The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur," Opt. Express 14, 12517-12531 (2006).
    [CrossRef] [PubMed]
  17. T. Savin, and P. S. Doyle, "Static and dynamic errors in particle tracking microrheology," Biophys. J. 88, 623-638 (2005).
    [CrossRef]
  18. P. Forscher, L. K. Kaczmarek, J. A. Buchanan, and S. J. Smith, "Cyclic-AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons," J. Neurosci. 7, 3600-3611 (1987).
    [PubMed]
  19. D. M. Suter, A. W. Schaefer, and P. Forscher, "Microtubule dynamics are necessary for Src family kinasedependent growth cone steering," Curr. Biol. 14, 1194-1199 (2004).
    [CrossRef] [PubMed]
  20. D. M. Suter, L. D. Errante, V. Belotserkovsky, and P. Forscher, "The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling," J. Cell Biol. 141, 227-240 (1998).
    [CrossRef] [PubMed]
  21. A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
    [CrossRef] [PubMed]
  22. E. L. Grzywa, A. C. Lee, G. U. Lee, and D. M. Suter, "High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy," J. Neurobiol. 66, 1529-1543 (2006).
    [CrossRef] [PubMed]
  23. C. H. Lin, E. M. Espreafico, M. S. Mooseker, and P. Forscher, "Myosin drives retrograde F-actin flow in neuronal growth cones," Neuron 16, 769-782 (1996).
    [CrossRef] [PubMed]
  24. N. A. Medeiros, D. T. Burnette, and P. Forscher, "Myosin II functions in actin-bundle turnover in neuronal growth cones," Nat. Cell Biol. 8, 215-226 (2006).
    [CrossRef] [PubMed]
  25. A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett. 92, 224104 (2008).
    [CrossRef]

2009 (2)

B. Geiger, J. P. Spatz, and A. D. Bershadsky, "Environmental sensing through focal adhesions," Nat. Rev. Mol. Cell Biol. 10, 21-33 (2009).
[CrossRef] [PubMed]

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

2008 (5)

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, "High resolution traction force microscopy based on experimental and computational advances," Biophys. J. 94, 207-220 (2008).
[CrossRef]

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

A. van der Horst and N. R. Forde, "Calibration of dynamic holographic optical tweezers for force measurements on biomaterials," Opt. Express 16, 20987-21003 (2008).
[CrossRef] [PubMed]

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett. 92, 224104 (2008).
[CrossRef]

2006 (4)

E. L. Grzywa, A. C. Lee, G. U. Lee, and D. M. Suter, "High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy," J. Neurobiol. 66, 1529-1543 (2006).
[CrossRef] [PubMed]

N. A. Medeiros, D. T. Burnette, and P. Forscher, "Myosin II functions in actin-bundle turnover in neuronal growth cones," Nat. Cell Biol. 8, 215-226 (2006).
[CrossRef] [PubMed]

S. C. Chapin, V. Germain, and E. R. Dufresne, "Automated trapping, assembly, and sorting with holographic optical tweezers," Opt. Express 14, 13095-13100 (2006).
[CrossRef] [PubMed]

W. P. Wong and K. Halvorsen, "The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur," Opt. Express 14, 12517-12531 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Savin, and P. S. Doyle, "Static and dynamic errors in particle tracking microrheology," Biophys. J. 88, 623-638 (2005).
[CrossRef]

C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005).
[CrossRef] [PubMed]

2004 (2)

D. M. Suter, A. W. Schaefer, and P. Forscher, "Microtubule dynamics are necessary for Src family kinasedependent growth cone steering," Curr. Biol. 14, 1194-1199 (2004).
[CrossRef] [PubMed]

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, "Multi force optical tweezers to generate gradients of forces," Opt. Express 12, 3906-3910 (2004).
[CrossRef] [PubMed]

2002 (1)

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

2000 (2)

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, "Cell movement is guided by the rigidity of the substrate," Biophys. J. 79, 144-152 (2000).
[CrossRef] [PubMed]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional Optical Tweezers Using Computer-Generated Holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

1998 (2)

D. M. Suter, L. D. Errante, V. Belotserkovsky, and P. Forscher, "The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling," J. Cell Biol. 141, 227-240 (1998).
[CrossRef] [PubMed]

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

1997 (1)

D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, "Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages," Cell 88, 39-48 (1997).
[CrossRef] [PubMed]

1996 (2)

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

C. H. Lin, E. M. Espreafico, M. S. Mooseker, and P. Forscher, "Myosin drives retrograde F-actin flow in neuronal growth cones," Neuron 16, 769-782 (1996).
[CrossRef] [PubMed]

1995 (1)

C. H. Lin and P. Forscher, "Growth cone advance is inversely proportional to retrograde F-actin flow," Neuron 14, 763-771 (1995).
[CrossRef] [PubMed]

1987 (1)

P. Forscher, L. K. Kaczmarek, J. A. Buchanan, and S. J. Smith, "Cyclic-AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons," J. Neurosci. 7, 3600-3611 (1987).
[PubMed]

Allioux-Guerin, M.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Asbury, C. L.

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

Bard, L.

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

Belotserkovsky, V.

D. M. Suter, L. D. Errante, V. Belotserkovsky, and P. Forscher, "The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling," J. Cell Biol. 141, 227-240 (1998).
[CrossRef] [PubMed]

Bershadsky, A. D.

B. Geiger, J. P. Spatz, and A. D. Bershadsky, "Environmental sensing through focal adhesions," Nat. Rev. Mol. Cell Biol. 10, 21-33 (2009).
[CrossRef] [PubMed]

Block, S. M.

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

Boscher, C.

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

Buchanan, J. A.

P. Forscher, L. K. Kaczmarek, J. A. Buchanan, and S. J. Smith, "Cyclic-AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons," J. Neurosci. 7, 3600-3611 (1987).
[PubMed]

Burnette, D. T.

N. A. Medeiros, D. T. Burnette, and P. Forscher, "Myosin II functions in actin-bundle turnover in neuronal growth cones," Nat. Cell Biol. 8, 215-226 (2006).
[CrossRef] [PubMed]

Chapin, S. C.

Choquet, D.

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, "Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages," Cell 88, 39-48 (1997).
[CrossRef] [PubMed]

Coppey-Moisan, M.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, "Multi force optical tweezers to generate gradients of forces," Opt. Express 12, 3906-3910 (2004).
[CrossRef] [PubMed]

Crocker, J. C.

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

Curtis, J. E.

Danuser, G.

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

Dembo, M.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, "Cell movement is guided by the rigidity of the substrate," Biophys. J. 79, 144-152 (2000).
[CrossRef] [PubMed]

Doyle, P. S.

T. Savin, and P. S. Doyle, "Static and dynamic errors in particle tracking microrheology," Biophys. J. 88, 623-638 (2005).
[CrossRef]

Dufresne, E. R.

S. C. Chapin, V. Germain, and E. R. Dufresne, "Automated trapping, assembly, and sorting with holographic optical tweezers," Opt. Express 14, 13095-13100 (2006).
[CrossRef] [PubMed]

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Durieux, C.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Emiliani, V.

Errante, L. D.

D. M. Suter, L. D. Errante, V. Belotserkovsky, and P. Forscher, "The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling," J. Cell Biol. 141, 227-240 (1998).
[CrossRef] [PubMed]

Espreafico, E. M.

C. H. Lin, E. M. Espreafico, M. S. Mooseker, and P. Forscher, "Myosin drives retrograde F-actin flow in neuronal growth cones," Neuron 16, 769-782 (1996).
[CrossRef] [PubMed]

Felsenfeld, D. P.

D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, "Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages," Cell 88, 39-48 (1997).
[CrossRef] [PubMed]

Forde, N. R.

Forscher, P.

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

N. A. Medeiros, D. T. Burnette, and P. Forscher, "Myosin II functions in actin-bundle turnover in neuronal growth cones," Nat. Cell Biol. 8, 215-226 (2006).
[CrossRef] [PubMed]

D. M. Suter, A. W. Schaefer, and P. Forscher, "Microtubule dynamics are necessary for Src family kinasedependent growth cone steering," Curr. Biol. 14, 1194-1199 (2004).
[CrossRef] [PubMed]

D. M. Suter, L. D. Errante, V. Belotserkovsky, and P. Forscher, "The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling," J. Cell Biol. 141, 227-240 (1998).
[CrossRef] [PubMed]

C. H. Lin, E. M. Espreafico, M. S. Mooseker, and P. Forscher, "Myosin drives retrograde F-actin flow in neuronal growth cones," Neuron 16, 769-782 (1996).
[CrossRef] [PubMed]

C. H. Lin and P. Forscher, "Growth cone advance is inversely proportional to retrograde F-actin flow," Neuron 14, 763-771 (1995).
[CrossRef] [PubMed]

P. Forscher, L. K. Kaczmarek, J. A. Buchanan, and S. J. Smith, "Cyclic-AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons," J. Neurosci. 7, 3600-3611 (1987).
[PubMed]

Gallet, F.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Gardel, M. L.

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, "High resolution traction force microscopy based on experimental and computational advances," Biophys. J. 94, 207-220 (2008).
[CrossRef]

Geiger, B.

B. Geiger, J. P. Spatz, and A. D. Bershadsky, "Environmental sensing through focal adhesions," Nat. Rev. Mol. Cell Biol. 10, 21-33 (2009).
[CrossRef] [PubMed]

Gerbal, F.

Germain, V.

Grier, D. G.

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

Grzywa, E. L.

E. L. Grzywa, A. C. Lee, G. U. Lee, and D. M. Suter, "High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy," J. Neurobiol. 66, 1529-1543 (2006).
[CrossRef] [PubMed]

Haeggstrom, E.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett. 92, 224104 (2008).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional Optical Tweezers Using Computer-Generated Holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Halvorsen, K.

Henon, S.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Icard-Arcizet, D.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Ji, L.

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

Kaczmarek, L. K.

P. Forscher, L. K. Kaczmarek, J. A. Buchanan, and S. J. Smith, "Cyclic-AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons," J. Neurosci. 7, 3600-3611 (1987).
[PubMed]

Lambert, M.

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

Lang, M. J.

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

Lee, A. C.

E. L. Grzywa, A. C. Lee, G. U. Lee, and D. M. Suter, "High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy," J. Neurobiol. 66, 1529-1543 (2006).
[CrossRef] [PubMed]

Lee, G. U.

E. L. Grzywa, A. C. Lee, G. U. Lee, and D. M. Suter, "High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy," J. Neurobiol. 66, 1529-1543 (2006).
[CrossRef] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional Optical Tweezers Using Computer-Generated Holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Lin, C. H.

C. H. Lin, E. M. Espreafico, M. S. Mooseker, and P. Forscher, "Myosin drives retrograde F-actin flow in neuronal growth cones," Neuron 16, 769-782 (1996).
[CrossRef] [PubMed]

C. H. Lin and P. Forscher, "Growth cone advance is inversely proportional to retrograde F-actin flow," Neuron 14, 763-771 (1995).
[CrossRef] [PubMed]

Lo, C. M.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, "Cell movement is guided by the rigidity of the substrate," Biophys. J. 79, 144-152 (2000).
[CrossRef] [PubMed]

Masse, M. J.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Medeiros, N. A.

N. A. Medeiros, D. T. Burnette, and P. Forscher, "Myosin II functions in actin-bundle turnover in neuronal growth cones," Nat. Cell Biol. 8, 215-226 (2006).
[CrossRef] [PubMed]

Mederios, N.

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

Mege, R. M.

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

Mevel, J. C.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Mooseker, M. S.

C. H. Lin, E. M. Espreafico, M. S. Mooseker, and P. Forscher, "Myosin drives retrograde F-actin flow in neuronal growth cones," Neuron 16, 769-782 (1996).
[CrossRef] [PubMed]

Ojala, H.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett. 92, 224104 (2008).
[CrossRef]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional Optical Tweezers Using Computer-Generated Holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Sabass, B.

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, "High resolution traction force microscopy based on experimental and computational advances," Biophys. J. 94, 207-220 (2008).
[CrossRef]

Sanvitto, D.

Savin, T.

T. Savin, and P. S. Doyle, "Static and dynamic errors in particle tracking microrheology," Biophys. J. 88, 623-638 (2005).
[CrossRef]

Schaefer, A. W.

D. M. Suter, A. W. Schaefer, and P. Forscher, "Microtubule dynamics are necessary for Src family kinasedependent growth cone steering," Curr. Biol. 14, 1194-1199 (2004).
[CrossRef] [PubMed]

Schaefer, A.W.

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

Schmitz, C. H. J.

Schoonderwoert, V. T. G.

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

Schwarz, U. S.

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, "High resolution traction force microscopy based on experimental and computational advances," Biophys. J. 94, 207-220 (2008).
[CrossRef]

Shaevitz, J. W.

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

Sheetz, M. P.

D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, "Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages," Cell 88, 39-48 (1997).
[CrossRef] [PubMed]

Smith, S. J.

P. Forscher, L. K. Kaczmarek, J. A. Buchanan, and S. J. Smith, "Cyclic-AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons," J. Neurosci. 7, 3600-3611 (1987).
[PubMed]

Spatz, J. P.

B. Geiger, J. P. Spatz, and A. D. Bershadsky, "Environmental sensing through focal adhesions," Nat. Rev. Mol. Cell Biol. 10, 21-33 (2009).
[CrossRef] [PubMed]

C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005).
[CrossRef] [PubMed]

Suter, D. M.

E. L. Grzywa, A. C. Lee, G. U. Lee, and D. M. Suter, "High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy," J. Neurobiol. 66, 1529-1543 (2006).
[CrossRef] [PubMed]

D. M. Suter, A. W. Schaefer, and P. Forscher, "Microtubule dynamics are necessary for Src family kinasedependent growth cone steering," Curr. Biol. 14, 1194-1199 (2004).
[CrossRef] [PubMed]

D. M. Suter, L. D. Errante, V. Belotserkovsky, and P. Forscher, "The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling," J. Cell Biol. 141, 227-240 (1998).
[CrossRef] [PubMed]

Thoumine, O.

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional Optical Tweezers Using Computer-Generated Holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Tramier, M.

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

Tuma, R.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett. 92, 224104 (2008).
[CrossRef]

van der Horst, A.

Wallin, A. E.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett. 92, 224104 (2008).
[CrossRef]

Wang, H. B.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, "Cell movement is guided by the rigidity of the substrate," Biophys. J. 79, 144-152 (2000).
[CrossRef] [PubMed]

Wang, Y. L.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, "Cell movement is guided by the rigidity of the substrate," Biophys. J. 79, 144-152 (2000).
[CrossRef] [PubMed]

Waterman, C. M.

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, "High resolution traction force microscopy based on experimental and computational advances," Biophys. J. 94, 207-220 (2008).
[CrossRef]

Wong, W. P.

Zahid, M.

Appl. Phys. Lett. (1)

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett. 92, 224104 (2008).
[CrossRef]

Biophys. J. (5)

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, "High resolution traction force microscopy based on experimental and computational advances," Biophys. J. 94, 207-220 (2008).
[CrossRef]

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, "Cell movement is guided by the rigidity of the substrate," Biophys. J. 79, 144-152 (2000).
[CrossRef] [PubMed]

M. Allioux-Guerin, D. Icard-Arcizet, C. Durieux, S. Henon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, "Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers," Biophys. J. 96, 238-247 (2009).
[CrossRef]

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

T. Savin, and P. S. Doyle, "Static and dynamic errors in particle tracking microrheology," Biophys. J. 88, 623-638 (2005).
[CrossRef]

Cell (1)

D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, "Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages," Cell 88, 39-48 (1997).
[CrossRef] [PubMed]

Curr. Biol. (1)

D. M. Suter, A. W. Schaefer, and P. Forscher, "Microtubule dynamics are necessary for Src family kinasedependent growth cone steering," Curr. Biol. 14, 1194-1199 (2004).
[CrossRef] [PubMed]

Dev. Cell (1)

A.W. Schaefer, V. T. G. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and P. Forscher, "Coordination of actin filament and microtubule dynamics during neurite outgrowth," Dev. Cell 15, 146-162 (2008).
[CrossRef] [PubMed]

J. Cell Biol. (1)

D. M. Suter, L. D. Errante, V. Belotserkovsky, and P. Forscher, "The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling," J. Cell Biol. 141, 227-240 (1998).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

J. Neurobiol. (1)

E. L. Grzywa, A. C. Lee, G. U. Lee, and D. M. Suter, "High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy," J. Neurobiol. 66, 1529-1543 (2006).
[CrossRef] [PubMed]

J. Neurosci. (2)

P. Forscher, L. K. Kaczmarek, J. A. Buchanan, and S. J. Smith, "Cyclic-AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons," J. Neurosci. 7, 3600-3611 (1987).
[PubMed]

L. Bard, C. Boscher, M. Lambert, R. M. Mege, D. Choquet, and O. Thoumine, "A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration," J. Neurosci. 28, 5879-5890 (2008).
[CrossRef] [PubMed]

Nat. Cell Biol. (1)

N. A. Medeiros, D. T. Burnette, and P. Forscher, "Myosin II functions in actin-bundle turnover in neuronal growth cones," Nat. Cell Biol. 8, 215-226 (2006).
[CrossRef] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

B. Geiger, J. P. Spatz, and A. D. Bershadsky, "Environmental sensing through focal adhesions," Nat. Rev. Mol. Cell Biol. 10, 21-33 (2009).
[CrossRef] [PubMed]

Neuron (2)

C. H. Lin and P. Forscher, "Growth cone advance is inversely proportional to retrograde F-actin flow," Neuron 14, 763-771 (1995).
[CrossRef] [PubMed]

C. H. Lin, E. M. Espreafico, M. S. Mooseker, and P. Forscher, "Myosin drives retrograde F-actin flow in neuronal growth cones," Neuron 16, 769-782 (1996).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional Optical Tweezers Using Computer-Generated Holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Opt. Express (5)

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (4086 KB)     
» Media 2: MOV (3392 KB)     
» Media 3: MOV (4647 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Holographic optical tweezers setup. (a) Schematic layout of the instrument. (b) Schematic layout of the feedback control system.

Fig. 2.
Fig. 2.

Multiplexed force measurements. (a) (Media 1) Eight apCAM-coated beads are held on the membrane of an Aplysia growth cone with holographic optical tweezers. Bead trajectories are superimposed (points represent bead position every 50 s). Movie: sped up 120 times, field of view 75 × 65 μm, arrows indicate forces generated by the cell. (b) Magnitude of bead displacements and measured forces generated by the cells. (c) Close up of the forces for four of the beads.

Fig. 3.
Fig. 3.

Position clamp efficiency (a) (Media 2) A sinusoidal drag force is applied to 10 trapped beads with holographic optical tweezers. Nine beads are position-clamped (Gp = 0.3) and one is in a stationary trap (Gp = 0) (bottom center). The arrows represent the error, xbead (t)-xsetpoint (t). Movie: sped up 5 times, 39 × 22 μm. (b) Bead displacements (green), trap positions (red) and setpoint positions (blue). (c) Power spectral density of the position-clamped beads relative to the power spectral density of the reference bead (different color points for different beads, solid line: model for our experiment, dashed line: model for a 30 Hz feedback loop).

Fig. 4.
Fig. 4.

Closed-loop force measurement on a live cell (a) (Media 3) Left bead is in a fixed trap (Gp = 0), right bead is in an active trap (Gp = 0.3). Both beads are pulled toward the axon shaft (arrow represents the optical forces). Movie: sped up 30 times, 42 × 54 μm. (b) Force-clamped bead is being displaced toward the axon shaft. (c) Displacement of the bead (green) and optical forces projected along the underlying filopodium (red) over time (shaded regions indicate times when the bead is force-clamped).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x trap ( t + Δt ) = x trap ( t ) G p [ x bead ( t ) x setpoint ( t ) ] ,
k ( x bead x trap ) γ x bead + F ext 0 ,
X bead ( ω ) = ( e Δ t 1 ) G p X trap ( ω )
X trap ( ω ) = ( 1 + τ 0 ) X bead ( ω ) F ext ( ω ) / k ,
X active ( ω ) 2 X passive ( ω ) 2 = ( 1 cos ( ω Δ t ) ) ( 1 + ω 2 τ 0 2 ) ( 1 + ω 2 τ 0 2 ) ( 1 cos ( ω Δ t ) ) G p ( 1 cos ( ω Δ t ) + ω τ 0 sin ( ω Δ t ) ) + G p 2 / 2

Metrics