Abstract

Relativistically-intense laser beam with large field gradient (“laser gate”) enables strong inelastic scattering of electrons crossing the beam. This process allows for multi-MeV electron net acceleration per pass within the wavelength space. Inelastic scattering even in low-gradient laser field may also induce extremely tight temporal focusing and electron bunch formation down to quantum, zepto-second limit.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Light amplification and electron acceleration by a noncollinear Compton process

P. Dobiasch, M. V. Fedorov, and S. Stenholm
J. Opt. Soc. Am. B 4(7) 1109-1115 (1987)

Nonlinear optics in relativistic plasmas

Donald Umstadter, Szu-Yuan Chen, Rob Wagner, Anatoly Maksimchuk, and Gennady Sarkisov
Opt. Express 2(7) 282-288 (1998)

Relativistic ionization of hydrogen by linearly polarized light

D. P. Crawford and H. R. Reiss
Opt. Express 2(7) 289-297 (1998)

References

  • View by:
  • |
  • |
  • |

  1. H. A. H. Boot and R. B. R-S. Harvie, “Charged particles in a non-uniform radio-frequency field,” Nature 180, 1187–1187 (1957)
    [Crossref]
  2. A. V. Gaponov and M. A. Miller, “Potential wells for charged particles in a high-frequency electromagnetic field,” Sov. Phys. JETP 7, 168–169 (1958)
  3. T. W. B. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16, 1054–1056 (1966)
    [Crossref]
  4. M. V. Fedorov, “Stimulated scattering of electrons by photons and adiabatic switching on hypothesis,” Opt. Commun. 12, 205–209 (1974)
    [Crossref]
  5. A. E. Kaplan and A. L. Pokrovsky, “Fully relativistic theory of the ponderomotive force in an ultraintense standing wave,” Phys. Rev. Lett. 95, 053601(1–4) (2005)
    [Crossref] [PubMed]
  6. A. L. Pokrovsky and A. E. Kaplan, “Relativistic reversal of the ponderomotive force in a standing laser wave,” Phys. Rev. A 72, 043401(1–12) (2005)
    [Crossref]
  7. C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
    [Crossref]
  8. C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
    [Crossref] [PubMed]
  9. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
    [Crossref] [PubMed]
  10. M. J. Hogan, C. D. Barnes, and C. F. Clayton, “Multi-GeV energy gain in a plasma-wakefield accelerator,” Phys. Rev. Lett. 95, 054802(1–4) (2005).
    [Crossref] [PubMed]
  11. G. Shvets, “Beat-Wave Excitation of Plasma Waves Based on Relativistic Bistability,” Phys. Rev. Lett. 93, 195004(1–4) (2004)
    [Crossref] [PubMed]
  12. We neglect here the “radiation friction” force on electron; this was supported by all our estimates and numerical simulations for the specific situation. The time for an electron to pass through the laser gate is very short, and for the radiation friction to affect the motion, one needs γ ~ 102 -103, which is beyond the domain of interest. Also, when addressing the EM-electron interaction, we use classical approach, since in the cases of interest, a typical number of photons absorbed by an electron per pass, is of the order of mc2/h̄ω ~ 106.
  13. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, p. 312 (Pergamon, New-York, 1984)
  14. R. H. Varian and S. F. Varian, “A High Frequency Oscillator and Amplifier,” J. Appl. Phys. 10, 321–327 (1939)
    [Crossref]
  15. D. L. Webster, “Cathode-Ray Bunching,” J. Appl. Phys. 10, 501–508 (1939)
    [Crossref]
  16. W. W. Hansen, “A Type of Electrical Resonator,” J. Appl. Phys. 9, 654–663 (1938)
    [Crossref]
  17. W. W. Hansen and R. D. Richtmyer, “On Resonators Suitable for Klystron Oscillators,” J. Appl. Phys. 10, 189–199 (1939).
    [Crossref]
  18. It would be a challenging but greatly rewarding endeavor to develop Hansen-like resonators for optical domain; there is no physical restriction on the size of the field inhomogeneity ξL.
  19. M. Born and E. Wolf, Principles of Optics, Pergamon Press, 6th Ed. 1980, p. 127.
  20. A. E. Kaplan, “Relativistic nonlinear optics of a single cyclotron electron,” Phys. Rev. Lett. 56, 456–459 (1986)
    [Crossref] [PubMed]
  21. A. E. Kaplan and Y. J. Ding, “Hysteretic and multiphoton optical resonances of a single cyclotron electron,” IEEE J. Quantum Electron. 24, 1470–1482 (1988)
    [Crossref]
  22. W. Becker and J. K. McIver, Phys. Rev. A31, 783–789 (1985)
    [Crossref] [PubMed]
  23. A. E. Kaplan and S. Datta, “Extreme-ultraviolet and X-ray Emission and Amplification by Non-relativistic Beams Traversing a Superlattice,” Appl. Phys. Lett. 44, 661–663 (1984)
    [Crossref]
  24. S. Datta and A. E. Kaplan, “Quantum Theory of Spontaneous and Stimulated Resonant Transition Radiation,” Phys. Rev. A. 31, 790–796 (1985).
    [Crossref] [PubMed]
  25. A. E. Kaplan and P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801(1–4) (2002).
    [Crossref] [PubMed]
  26. V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, “Space-charge distribution across internal interfaces in electro-ceramics using electron holography,” J. Am. Ceram. Soc. 80, 1117–1130 (1997).
    [Crossref]
  27. Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, v. 2: The structure and Evolution of the Universe, p. 361 (The Univ. Chicago Press, Chicago, 1983).
  28. A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, “Shock-shells in Coulomb explosion of nanoclusters,” Phys. Rev. Lett. 91, 143401(1–4) (2003).
    [Crossref] [PubMed]

2005 (3)

A. E. Kaplan and A. L. Pokrovsky, “Fully relativistic theory of the ponderomotive force in an ultraintense standing wave,” Phys. Rev. Lett. 95, 053601(1–4) (2005)
[Crossref] [PubMed]

A. L. Pokrovsky and A. E. Kaplan, “Relativistic reversal of the ponderomotive force in a standing laser wave,” Phys. Rev. A 72, 043401(1–12) (2005)
[Crossref]

M. J. Hogan, C. D. Barnes, and C. F. Clayton, “Multi-GeV energy gain in a plasma-wakefield accelerator,” Phys. Rev. Lett. 95, 054802(1–4) (2005).
[Crossref] [PubMed]

2004 (3)

G. Shvets, “Beat-Wave Excitation of Plasma Waves Based on Relativistic Bistability,” Phys. Rev. Lett. 93, 195004(1–4) (2004)
[Crossref] [PubMed]

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

2003 (1)

A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, “Shock-shells in Coulomb explosion of nanoclusters,” Phys. Rev. Lett. 91, 143401(1–4) (2003).
[Crossref] [PubMed]

2002 (1)

A. E. Kaplan and P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801(1–4) (2002).
[Crossref] [PubMed]

1999 (1)

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

1997 (1)

V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, “Space-charge distribution across internal interfaces in electro-ceramics using electron holography,” J. Am. Ceram. Soc. 80, 1117–1130 (1997).
[Crossref]

1988 (1)

A. E. Kaplan and Y. J. Ding, “Hysteretic and multiphoton optical resonances of a single cyclotron electron,” IEEE J. Quantum Electron. 24, 1470–1482 (1988)
[Crossref]

1986 (1)

A. E. Kaplan, “Relativistic nonlinear optics of a single cyclotron electron,” Phys. Rev. Lett. 56, 456–459 (1986)
[Crossref] [PubMed]

1985 (1)

S. Datta and A. E. Kaplan, “Quantum Theory of Spontaneous and Stimulated Resonant Transition Radiation,” Phys. Rev. A. 31, 790–796 (1985).
[Crossref] [PubMed]

1984 (1)

A. E. Kaplan and S. Datta, “Extreme-ultraviolet and X-ray Emission and Amplification by Non-relativistic Beams Traversing a Superlattice,” Appl. Phys. Lett. 44, 661–663 (1984)
[Crossref]

1974 (1)

M. V. Fedorov, “Stimulated scattering of electrons by photons and adiabatic switching on hypothesis,” Opt. Commun. 12, 205–209 (1974)
[Crossref]

1966 (1)

T. W. B. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16, 1054–1056 (1966)
[Crossref]

1958 (1)

A. V. Gaponov and M. A. Miller, “Potential wells for charged particles in a high-frequency electromagnetic field,” Sov. Phys. JETP 7, 168–169 (1958)

1957 (1)

H. A. H. Boot and R. B. R-S. Harvie, “Charged particles in a non-uniform radio-frequency field,” Nature 180, 1187–1187 (1957)
[Crossref]

1939 (3)

W. W. Hansen and R. D. Richtmyer, “On Resonators Suitable for Klystron Oscillators,” J. Appl. Phys. 10, 189–199 (1939).
[Crossref]

R. H. Varian and S. F. Varian, “A High Frequency Oscillator and Amplifier,” J. Appl. Phys. 10, 321–327 (1939)
[Crossref]

D. L. Webster, “Cathode-Ray Bunching,” J. Appl. Phys. 10, 501–508 (1939)
[Crossref]

1938 (1)

W. W. Hansen, “A Type of Electrical Resonator,” J. Appl. Phys. 9, 654–663 (1938)
[Crossref]

Barnes, C. D.

M. J. Hogan, C. D. Barnes, and C. F. Clayton, “Multi-GeV energy gain in a plasma-wakefield accelerator,” Phys. Rev. Lett. 95, 054802(1–4) (2005).
[Crossref] [PubMed]

Becker, W.

W. Becker and J. K. McIver, Phys. Rev. A31, 783–789 (1985)
[Crossref] [PubMed]

Boot, H. A. H.

H. A. H. Boot and R. B. R-S. Harvie, “Charged particles in a non-uniform radio-frequency field,” Nature 180, 1187–1187 (1957)
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, Pergamon Press, 6th Ed. 1980, p. 127.

Bruhwiler, D.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Burgy, F.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Cary, J.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Clayton, C. F.

M. J. Hogan, C. D. Barnes, and C. F. Clayton, “Multi-GeV energy gain in a plasma-wakefield accelerator,” Phys. Rev. Lett. 95, 054802(1–4) (2005).
[Crossref] [PubMed]

Datta, S.

S. Datta and A. E. Kaplan, “Quantum Theory of Spontaneous and Stimulated Resonant Transition Radiation,” Phys. Rev. A. 31, 790–796 (1985).
[Crossref] [PubMed]

A. E. Kaplan and S. Datta, “Extreme-ultraviolet and X-ray Emission and Amplification by Non-relativistic Beams Traversing a Superlattice,” Appl. Phys. Lett. 44, 661–663 (1984)
[Crossref]

Ding, Y. J.

A. E. Kaplan and Y. J. Ding, “Hysteretic and multiphoton optical resonances of a single cyclotron electron,” IEEE J. Quantum Electron. 24, 1470–1482 (1988)
[Crossref]

Dravid, V. P.

V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, “Space-charge distribution across internal interfaces in electro-ceramics using electron holography,” J. Am. Ceram. Soc. 80, 1117–1130 (1997).
[Crossref]

Dubetsky, B. Y.

A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, “Shock-shells in Coulomb explosion of nanoclusters,” Phys. Rev. Lett. 91, 143401(1–4) (2003).
[Crossref] [PubMed]

Esarey, E.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Faure, J.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Fedorov, M. V.

M. V. Fedorov, “Stimulated scattering of electrons by photons and adiabatic switching on hypothesis,” Opt. Commun. 12, 205–209 (1974)
[Crossref]

Gahn, C.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

Gaponov, A. V.

A. V. Gaponov and M. A. Miller, “Potential wells for charged particles in a high-frequency electromagnetic field,” Sov. Phys. JETP 7, 168–169 (1958)

Geddes, C. G. R.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Glinec, Y.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Gordienko, S.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Habs, D.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

Hansen, W. W.

W. W. Hansen and R. D. Richtmyer, “On Resonators Suitable for Klystron Oscillators,” J. Appl. Phys. 10, 189–199 (1939).
[Crossref]

W. W. Hansen, “A Type of Electrical Resonator,” J. Appl. Phys. 9, 654–663 (1938)
[Crossref]

Harvie, R. B. R-S.

H. A. H. Boot and R. B. R-S. Harvie, “Charged particles in a non-uniform radio-frequency field,” Nature 180, 1187–1187 (1957)
[Crossref]

Hogan, M. J.

M. J. Hogan, C. D. Barnes, and C. F. Clayton, “Multi-GeV energy gain in a plasma-wakefield accelerator,” Phys. Rev. Lett. 95, 054802(1–4) (2005).
[Crossref] [PubMed]

Kaplan, A. E.

A. E. Kaplan and A. L. Pokrovsky, “Fully relativistic theory of the ponderomotive force in an ultraintense standing wave,” Phys. Rev. Lett. 95, 053601(1–4) (2005)
[Crossref] [PubMed]

A. L. Pokrovsky and A. E. Kaplan, “Relativistic reversal of the ponderomotive force in a standing laser wave,” Phys. Rev. A 72, 043401(1–12) (2005)
[Crossref]

A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, “Shock-shells in Coulomb explosion of nanoclusters,” Phys. Rev. Lett. 91, 143401(1–4) (2003).
[Crossref] [PubMed]

A. E. Kaplan and P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801(1–4) (2002).
[Crossref] [PubMed]

A. E. Kaplan and Y. J. Ding, “Hysteretic and multiphoton optical resonances of a single cyclotron electron,” IEEE J. Quantum Electron. 24, 1470–1482 (1988)
[Crossref]

A. E. Kaplan, “Relativistic nonlinear optics of a single cyclotron electron,” Phys. Rev. Lett. 56, 456–459 (1986)
[Crossref] [PubMed]

S. Datta and A. E. Kaplan, “Quantum Theory of Spontaneous and Stimulated Resonant Transition Radiation,” Phys. Rev. A. 31, 790–796 (1985).
[Crossref] [PubMed]

A. E. Kaplan and S. Datta, “Extreme-ultraviolet and X-ray Emission and Amplification by Non-relativistic Beams Traversing a Superlattice,” Appl. Phys. Lett. 44, 661–663 (1984)
[Crossref]

Kibble, T. W. B.

T. W. B. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16, 1054–1056 (1966)
[Crossref]

Kiselev, S.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, p. 312 (Pergamon, New-York, 1984)

Leemans, W. P.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Lefebvre, E.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, p. 312 (Pergamon, New-York, 1984)

Malka, V.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

McIver, J. K.

W. Becker and J. K. McIver, Phys. Rev. A31, 783–789 (1985)
[Crossref] [PubMed]

Meyer-ter-Vehn, J.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

Miller, M. A.

A. V. Gaponov and M. A. Miller, “Potential wells for charged particles in a high-frequency electromagnetic field,” Sov. Phys. JETP 7, 168–169 (1958)

Nieter, C.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Novikov, I. D.

Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, v. 2: The structure and Evolution of the Universe, p. 361 (The Univ. Chicago Press, Chicago, 1983).

Pitaevskii, L. P.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, p. 312 (Pergamon, New-York, 1984)

Pokrovsky, A. L.

A. E. Kaplan and A. L. Pokrovsky, “Fully relativistic theory of the ponderomotive force in an ultraintense standing wave,” Phys. Rev. Lett. 95, 053601(1–4) (2005)
[Crossref] [PubMed]

A. L. Pokrovsky and A. E. Kaplan, “Relativistic reversal of the ponderomotive force in a standing laser wave,” Phys. Rev. A 72, 043401(1–12) (2005)
[Crossref]

Pretzler, G.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

Pukhov, A.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

Ravikumar, V.

V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, “Space-charge distribution across internal interfaces in electro-ceramics using electron holography,” J. Am. Ceram. Soc. 80, 1117–1130 (1997).
[Crossref]

Richtmyer, R. D.

W. W. Hansen and R. D. Richtmyer, “On Resonators Suitable for Klystron Oscillators,” J. Appl. Phys. 10, 189–199 (1939).
[Crossref]

Rodrigues, R. P.

V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, “Space-charge distribution across internal interfaces in electro-ceramics using electron holography,” J. Am. Ceram. Soc. 80, 1117–1130 (1997).
[Crossref]

Rousseau, J. P.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Schroeder, C. B.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Shkolnikov, P. L.

A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, “Shock-shells in Coulomb explosion of nanoclusters,” Phys. Rev. Lett. 91, 143401(1–4) (2003).
[Crossref] [PubMed]

A. E. Kaplan and P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801(1–4) (2002).
[Crossref] [PubMed]

Shvets, G.

G. Shvets, “Beat-Wave Excitation of Plasma Waves Based on Relativistic Bistability,” Phys. Rev. Lett. 93, 195004(1–4) (2004)
[Crossref] [PubMed]

Thirolf, P.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

Toth, C.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Tsakiris, G. D.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

van Tilborg, C, J.

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

Varian, R. H.

R. H. Varian and S. F. Varian, “A High Frequency Oscillator and Amplifier,” J. Appl. Phys. 10, 321–327 (1939)
[Crossref]

Varian, S. F.

R. H. Varian and S. F. Varian, “A High Frequency Oscillator and Amplifier,” J. Appl. Phys. 10, 321–327 (1939)
[Crossref]

Webster, D. L.

D. L. Webster, “Cathode-Ray Bunching,” J. Appl. Phys. 10, 501–508 (1939)
[Crossref]

Witte, K. J.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, Pergamon Press, 6th Ed. 1980, p. 127.

Zel’dovich, Ya. B.

Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, v. 2: The structure and Evolution of the Universe, p. 361 (The Univ. Chicago Press, Chicago, 1983).

Appl. Phys. Lett. (1)

A. E. Kaplan and S. Datta, “Extreme-ultraviolet and X-ray Emission and Amplification by Non-relativistic Beams Traversing a Superlattice,” Appl. Phys. Lett. 44, 661–663 (1984)
[Crossref]

IEEE J. Quantum Electron. (1)

A. E. Kaplan and Y. J. Ding, “Hysteretic and multiphoton optical resonances of a single cyclotron electron,” IEEE J. Quantum Electron. 24, 1470–1482 (1988)
[Crossref]

J. Am. Ceram. Soc. (1)

V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, “Space-charge distribution across internal interfaces in electro-ceramics using electron holography,” J. Am. Ceram. Soc. 80, 1117–1130 (1997).
[Crossref]

J. Appl. Phys. (4)

R. H. Varian and S. F. Varian, “A High Frequency Oscillator and Amplifier,” J. Appl. Phys. 10, 321–327 (1939)
[Crossref]

D. L. Webster, “Cathode-Ray Bunching,” J. Appl. Phys. 10, 501–508 (1939)
[Crossref]

W. W. Hansen, “A Type of Electrical Resonator,” J. Appl. Phys. 9, 654–663 (1938)
[Crossref]

W. W. Hansen and R. D. Richtmyer, “On Resonators Suitable for Klystron Oscillators,” J. Appl. Phys. 10, 189–199 (1939).
[Crossref]

Nature (3)

H. A. H. Boot and R. B. R-S. Harvie, “Charged particles in a non-uniform radio-frequency field,” Nature 180, 1187–1187 (1957)
[Crossref]

C. G. R. Geddes, C. Toth, C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004)
[Crossref] [PubMed]

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004)
[Crossref] [PubMed]

Opt. Commun. (1)

M. V. Fedorov, “Stimulated scattering of electrons by photons and adiabatic switching on hypothesis,” Opt. Commun. 12, 205–209 (1974)
[Crossref]

Phys. Rev. A (1)

A. L. Pokrovsky and A. E. Kaplan, “Relativistic reversal of the ponderomotive force in a standing laser wave,” Phys. Rev. A 72, 043401(1–12) (2005)
[Crossref]

Phys. Rev. A. (1)

S. Datta and A. E. Kaplan, “Quantum Theory of Spontaneous and Stimulated Resonant Transition Radiation,” Phys. Rev. A. 31, 790–796 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

A. E. Kaplan and P. L. Shkolnikov, “Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts,” Phys. Rev. Lett. 88, 074801(1–4) (2002).
[Crossref] [PubMed]

A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, “Shock-shells in Coulomb explosion of nanoclusters,” Phys. Rev. Lett. 91, 143401(1–4) (2003).
[Crossref] [PubMed]

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999)
[Crossref]

T. W. B. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16, 1054–1056 (1966)
[Crossref]

A. E. Kaplan, “Relativistic nonlinear optics of a single cyclotron electron,” Phys. Rev. Lett. 56, 456–459 (1986)
[Crossref] [PubMed]

A. E. Kaplan and A. L. Pokrovsky, “Fully relativistic theory of the ponderomotive force in an ultraintense standing wave,” Phys. Rev. Lett. 95, 053601(1–4) (2005)
[Crossref] [PubMed]

M. J. Hogan, C. D. Barnes, and C. F. Clayton, “Multi-GeV energy gain in a plasma-wakefield accelerator,” Phys. Rev. Lett. 95, 054802(1–4) (2005).
[Crossref] [PubMed]

G. Shvets, “Beat-Wave Excitation of Plasma Waves Based on Relativistic Bistability,” Phys. Rev. Lett. 93, 195004(1–4) (2004)
[Crossref] [PubMed]

Sov. Phys. JETP (1)

A. V. Gaponov and M. A. Miller, “Potential wells for charged particles in a high-frequency electromagnetic field,” Sov. Phys. JETP 7, 168–169 (1958)

Other (6)

We neglect here the “radiation friction” force on electron; this was supported by all our estimates and numerical simulations for the specific situation. The time for an electron to pass through the laser gate is very short, and for the radiation friction to affect the motion, one needs γ ~ 102 -103, which is beyond the domain of interest. Also, when addressing the EM-electron interaction, we use classical approach, since in the cases of interest, a typical number of photons absorbed by an electron per pass, is of the order of mc2/h̄ω ~ 106.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, p. 312 (Pergamon, New-York, 1984)

It would be a challenging but greatly rewarding endeavor to develop Hansen-like resonators for optical domain; there is no physical restriction on the size of the field inhomogeneity ξL.

M. Born and E. Wolf, Principles of Optics, Pergamon Press, 6th Ed. 1980, p. 127.

Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, v. 2: The structure and Evolution of the Universe, p. 361 (The Univ. Chicago Press, Chicago, 1983).

W. Becker and J. K. McIver, Phys. Rev. A31, 783–789 (1985)
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Focal-plane L-beam field profiles fult (ξ) (solid) and ftrc (ξ) (dashed). (b) Distribution of transmitted electrons (N) with the incident momentum ρ 0 = 3 over relativistic factor γ at the exit of the gate with the maximum field amplitude fmx = 12 for the field profiles fult (solid) and fcs with ξL = 2 (dashed). N 0 - the total number of incident electrons.

Fig. 2.
Fig. 2.

Phase-averaged change of electron energy [curves 1–4 in (a), (b)], 〈Δγ〉 and momentum (5–8), 〈Δρvs incident electron momentum, ρ 0. (a) Numerical simulation for a strongly relativistic laser gate (fmx = 12) with the profile fult (1,5); ftrc (2,6); fcs , ξL = 3.18 (3,7); fcs , ξL = 2.0 (4,8). (b) Numerical (solid) and analytical (Eq. (7), dotted line) results for fcs , ξL = 2, fmx = 0.6 (main plot) and fmx = 0.23 (inset).

Fig. 3.
Fig. 3.

Focusing/bunching of electrons (ρ32 = 1) by the laser gate (ξ32 = π,AL = 0.2). Spatio-temporal (b) and temporal (a) at x/λ = 28.5 (I), 36.5 (II), and 102 (III) profiles of the current density, j.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d p / dt = e ( E + p × H / γ ) ,
/ = f ( ξ ) sin ( τ + ϕ ) ; / = ρ / γ .
μ 2 π f mx / ( ξ L π 2 + 4 f mx 2 ) 1
f ult ( ξ ) = 3 f mx ( sin ξ ξ cos ξ ) / ξ 3 .
f cs ( ξ ) = f mx cos 2 ( ξ / ξ L ) at ξ / ξ L π / 2 and f cs = 0 otherwise
Δ γ = π 1 [ A L 2 ( γ 0 1 ) 2 ] 1 / 2 if A L > γ 0 1 ,
Δ γ ( 2 ) f mx 2 = B 3 sin ( π / B ) 2 γ 0 3 ( 1 B 2 ) 2 × [ B ( 3 B 2 ) ( 1 B 2 ) sin ( π B ) π cos ( π B ) ] ,
Δ γ ( 2 ) env 2 π f mx 2 ( ρ 0 / ξ L γ 0 2 ) 3
Δ γ ( 2 ) pk = π f mx 2 / ( 4 ξ L 3 ) ,
Δ ρ out ( 1 ) ( ϕ ) = f mx B 2 1 B 2 sin ( π B + ϕ ) sin ( π B ) .
τ ξ ( ϕ ) ϕ + ξ β 0 [ 1 Δ ρ out ( 1 ) ( ϕ ) β 0 γ 0 3 ]
2 π j ξ ( τ ) / j 0 = [ 1 ( ξ / ξ f ) cos ( π / B + ϕ ) ] 1 ,
ξ f = π ( γ 0 ξ L ) 3 ( B 2 1 ) 8 A L sin ( π / B )
j ξ ( τ ) j 0 2 π 1 / δ 1 + ( Δ τ ) 2 / 2 δ 3 where δ = Δ ξ ξ f .
Δ τ f = ω Δ t f = ( h ¯ ω / m c 2 ) / Δ γ max
Δ γ max = 8 A L / ( 3 π ) .

Metrics