Abstract

We demonstrate vertical beaming of linearly-polarized light from the hexapole mode of an engineered single-cell photonic crystal cavity by employing the solid angle scanning system. The vertical emission that is forbidden by the inner symmetry of the hexapole mode is made possible by perturbing its symmetry. Experimentally 56% of photons are funneled within a divergence angle of ±30°. Measured polarization-resolved far-field profiles of the engineered hexapole mode agree well with those of the predictions of finite difference time domain methods.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  2. H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
    [CrossRef]
  3. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
    [CrossRef]
  4. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
    [CrossRef]
  5. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
    [CrossRef] [PubMed]
  6. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
    [CrossRef] [PubMed]
  7. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  8. Q1. H. Altug, D. Englund, and J. V?ckovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
    [CrossRef]
  9. M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
    [CrossRef]
  10. S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008).
    [CrossRef] [PubMed]
  11. S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
    [CrossRef] [PubMed]
  12. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
    [PubMed]
  13. O. Painter and K. Srinivasan, "Polarization properties of dipolelike defect modes in photonic crystal nanocavities," Opt. Lett. 27, 339-341 (2002).
    [CrossRef]
  14. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007).
    [CrossRef] [PubMed]
  15. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  16. M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
    [CrossRef]
  17. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
    [CrossRef]
  18. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
    [CrossRef]
  19. J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002).
    [CrossRef]
  20. S.-H. Kim, M.-K. Seo, J.-Y. Kim, and Y.-H. Lee, "Effects of a bottom substrate on emission properties of a photonic crystal nanolaser," IPRM 07, IEEE 19th International Conference on, 480-483 (2007).
  21. D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
    [CrossRef]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numeric Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, England, 1992), p.108.
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain method, 2nd ed. (Artech House, Norwood, MA, 2000).
  24. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
    [CrossRef] [PubMed]
  25. D. Englund, I. Fushman, and J. V?ckovi?, "General Recipe for Designing Photonic Crystal Cavities," Opt. Express 12, 5961-5975 (2005).
    [CrossRef]
  26. J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008).
    [CrossRef]
  27. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]

2008 (3)

2007 (3)

2006 (2)

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Q1. H. Altug, D. Englund, and J. V?ckovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

2005 (4)

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

D. Englund, I. Fushman, and J. V?ckovi?, "General Recipe for Designing Photonic Crystal Cavities," Opt. Express 12, 5961-5975 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

2004 (2)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

2003 (2)

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
[CrossRef]

2002 (6)

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

O. Painter and K. Srinivasan, "Polarization properties of dipolelike defect modes in photonic crystal nanocavities," Opt. Lett. 27, 339-341 (2002).
[CrossRef]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
[PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Aers, G.

Akahane, Y.

Altug, H.

Q1. H. Altug, D. Englund, and J. V?ckovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

Atature, M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Baba, T.

Badolato, A.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Choi, J.-H.

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Dalacu, D.

Dapkus, P.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Eggleton, B. J.

Englund, D.

Q1. H. Altug, D. Englund, and J. V?ckovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

D. Englund, I. Fushman, and J. V?ckovi?, "General Recipe for Designing Photonic Crystal Cavities," Opt. Express 12, 5961-5975 (2005).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Frédérick, S.

Fushman, I.

D. Englund, I. Fushman, and J. V?ckovi?, "General Recipe for Designing Photonic Crystal Cavities," Opt. Express 12, 5961-5975 (2005).
[CrossRef]

Grillet, C.

Hennessy, K.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Hu, E.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Huh, J.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Hwang, I.-K.

J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008).
[CrossRef]

Hwang, J. -K.

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Hwang, J.-K.

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Inoshita, K.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

Jeong, K. -Y.

M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, J. -S.

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Kim, J.-S.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Kim, S. -H.

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Kim, S.-B.

J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008).
[CrossRef]

M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008).
[CrossRef] [PubMed]

S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008).
[CrossRef] [PubMed]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

Kim, S.-K.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Kita, S.

Koyama, F.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

Kuroki, Y.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Lapointe, J.

Lee, R.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, S.-K.

Lee, Y. -H.

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Lee, Y.-H.

S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008).
[CrossRef] [PubMed]

J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008).
[CrossRef]

M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

Loncar, M.

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
[CrossRef]

J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Mabuchi, H.

J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Monat, C.

Moss, D. J.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Notomi, M.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Nozaki, K.

O’Brien, J.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

Park, H. -G.

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Park, H.-G.

M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

Petroff, P. M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Poole, P. J.

Qiu, Y.

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
[CrossRef]

Regrency, P.

Ryu, H. -Y.

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Sano, D.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

Scherer, A.

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
[CrossRef]

J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

Seo, M. -K.

M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

Seo, M.-K.

J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008).
[CrossRef]

Shin, D.-J.

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

Smith, C. L.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B.-S.

Song, D.-S.

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

Srinivasan, K.

Viktorovitch, P.

Vuckovic, J.

Q1. H. Altug, D. Englund, and J. V?ckovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

D. Englund, I. Fushman, and J. V?ckovi?, "General Recipe for Designing Photonic Crystal Cavities," Opt. Express 12, 5961-5975 (2005).
[CrossRef]

J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Williams, R. L.

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yang, J.-K.

J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008).
[CrossRef]

M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Yang, S.-M.

Yariv, A.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
[CrossRef]

M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008).
[CrossRef]

IEEE J. Quantum Electron (1)

D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Nat. Phys. (1)

Q1. H. Altug, D. Englund, and J. V?ckovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Nature (1)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. B (1)

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Science (3)

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Other (3)

S.-H. Kim, M.-K. Seo, J.-Y. Kim, and Y.-H. Lee, "Effects of a bottom substrate on emission properties of a photonic crystal nanolaser," IPRM 07, IEEE 19th International Conference on, 480-483 (2007).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numeric Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, England, 1992), p.108.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain method, 2nd ed. (Artech House, Norwood, MA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematics of a single-cell PhC cavity built on InGaAsP slab and InP substrate. (b) Scanning electron microscope image of an engineered single-cell PhC cavity. The radii of two nearest neighbor air holes on the x-axis (r1) are increased up to 0.29a. (c) The calculated Hz, Ex and Ey field profiles of the engineered hexapole mode. (d) Measured lasing spectrum and polarization characteristics of the engineered hexapole mode.

Fig. 2.
Fig. 2.

Schematics of far-field measurement setup (left) and projection of the curved surface onto a 2-D flat surface (right).

Fig. 3.
Fig. 3.

(a) Measured far-field emission patterns in the engineered hexapole mode. (b) Cross sectional scan of the total intensity along x- (left) and y-axes (right). The measurements (black lines) agree well with the 3-D FDTD simulation results (red dotted lines). (c)-(d) Measured polarization-resolved far-field emission patterns. θ- and ϕ-polarization components are measured in (c) and (d), respectively.

Fig. 4.
Fig. 4.

(a) Measured far-field emission pattern in the reference hexapole mode. (b) SEM image of a reference single-cell PhC cavity. (c)-(d) The polarization-resolved far-field emission patterns. θ- and ϕ-polarization components are measured in (c) and (d), respectively.

Fig. 5.
Fig. 5.

3-D FDTD simulation results of the far-field emission patterns in the engineered hexapole mode. (a) Total intensity, (b) θ-, (c) ϕ-, (d) x- and (e) y-polarization components of far field patterns are computed.

Fig. 6.
Fig. 6.

3-D FDTD simulation results of the far-field emission patterns in the reference hexapole mode. (a) Total intensity, (b) θ-, and (c) ϕ-polarization components of far-field patterns are computed.

Metrics