Abstract

In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a single-pass of the solid-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible spectrum, by appropriate choice of semiconductor material and single-pass laser wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schneider, S. Schiller, and J. Mlynek, "1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser," Opt. Lett. 21, 1999-2001 (1996).
    [CrossRef] [PubMed]
  2. T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals," JOSA B,  3, 683-686 (1986)
    [CrossRef]
  3. C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, "Tunable pulses from 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system," Opt. Lett. 33, 192-194 (2008).
    [CrossRef] [PubMed]
  4. J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson-Engels, B. Sumpf, G. Erbert, and P. M.  Petersen, "High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser," Opt. Express 16, 2486-2493 (2008).
    [CrossRef] [PubMed]
  5. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. L. Mortensen, P. Buchhave, and F. Laurell, "Efficient all solid-state continuous-wave yellow-orange light source," Opt. Express 13, 1188-1192 (2005).
    [CrossRef] [PubMed]
  6. S. Johansson, S. Spiekermann, S. Wang, V. Pasiskevicius, F. Laurell, and K. Ekvall, "Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP," Opt. Express 12, 4935-4940 (2004).
    [CrossRef] [PubMed]
  7. S. Johansson, S. Wang, V. Pasiskevicius, and F. Laurell, "Compact 492-nm light source based on sum-frequency mixing," Opt. Express 13, 2590-2595 (2005).
    [CrossRef] [PubMed]
  8. E. Karamehmedovi?, C. Pedersen, M. T. Andersen, and P. Tidemand-Lichtenberg, "Efficient visible light generation by mixing of a solid-state laser and a tapered diode laser," Opt. Express 15, 12240-12245 (2007).
    [CrossRef] [PubMed]
  9. S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
    [CrossRef]
  10. A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
    [CrossRef]
  11. J. Chilla, Paper PTuD3, in: Proceedings of the Conference on Photonic Applications Systems Technologies, San Jose, 2008.
  12. J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
    [CrossRef]
  13. D. R. Preuss and J. L. Gole, "Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design," Appl. Opt. 19, 702-710 (1980).
    [CrossRef] [PubMed]

2009

S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
[CrossRef]

2008

2007

E. Karamehmedovi?, C. Pedersen, M. T. Andersen, and P. Tidemand-Lichtenberg, "Efficient visible light generation by mixing of a solid-state laser and a tapered diode laser," Opt. Express 15, 12240-12245 (2007).
[CrossRef] [PubMed]

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

2006

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

2005

2004

1996

1986

T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals," JOSA B,  3, 683-686 (1986)
[CrossRef]

1980

Andersen, M. T.

Andersen, P. E.

Andersson-Engels, S.

Buchhave, P.

Calvez, S.

S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
[CrossRef]

Cho, S.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Dawson, M. D.

S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
[CrossRef]

Driscoll, T. A.

T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals," JOSA B,  3, 683-686 (1986)
[CrossRef]

Ekvall, K.

Erbert, G.

Gole, J. L.

Guina, M.

S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
[CrossRef]

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Härkönen, A.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Hastie, J. E.

S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
[CrossRef]

Hoffman, H. J.

T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals," JOSA B,  3, 683-686 (1986)
[CrossRef]

Janousek, J.

Jensen, O. B.

Johansson, S.

Karamehmedovic, E.

Kim, G. B.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Kim, J.-Y.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Kim, K.-S.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Kim, T.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Krok, P.

Laurell, F.

Lee, J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Lee, S.-M.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Leinonen, T.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Lim, S.-J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Lochbrunner, S.

Lundeman, J. H.

Mlynek, J.

Morozov, Y. A.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Mortensen, J. L.

Okhotnikov, O.

S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
[CrossRef]

Okhotnikov, O. G.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Orsila, L.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Park, Y.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Pasiskevicius, V.

Pedersen, C.

Perkins, P. E.

T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals," JOSA B,  3, 683-686 (1986)
[CrossRef]

Pessa, M.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Petersen, P. M.

Preuss, D. R.

Rautiainen, J.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

Riedle, E.

Schiller, S.

Schneider, K.

Schriever, C.

Shim, J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Spiekermann, S.

Stone, R. E.

T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals," JOSA B,  3, 683-686 (1986)
[CrossRef]

Sumpf, B.

Tidemand-Lichtenberg, P.

Wang, S.

Yoo, J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

Appl. Opt.

IEEE Photon. Tech. Lett.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, T. Kim, and Y. Park, "A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers," IEEE Photon. Tech. Lett. 18, 2496-2498 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Härkönen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G.  Okhotnikov, "Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser," IEEE Photon. Technol. Lett. 19, 1550-1552 (2007).
[CrossRef]

JOSA B

T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals," JOSA B,  3, 683-686 (1986)
[CrossRef]

Laser Photon. Rev.

S. Calvez, J. E. Hastie, M. Guina, O. Okhotnikov, and M. D. Dawson, "Semiconductor disk lasers for the generation of visible and ultraviolet radiation," Laser Photon. Rev. published on-line 13th January 2009.
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Chilla, Paper PTuD3, in: Proceedings of the Conference on Photonic Applications Systems Technologies, San Jose, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for generation of 593 nm yellow-orange light within a high finesse SDL cavity, including PPKTP at an intra-cavity focus and a single-pass of the output beam of a diode-pumped Nd:YVO4 solid-state laser. HR: high reflector; OC: output coupler; BRF: birefringent filter.

Fig. 3.
Fig. 3.

Spectrum of the SDL: (a) using a three-plate BRF. The spectral line width is <0.1 nm, no additional peaks were seen using the three-plate filter. (b) using a simple 4mm BRF.

Fig. 4.
Fig. 4.

Characteristics of the 1342 nm laser with intra-cavity 0.3 mm-thick etalon. (a) Output spectra obtained over the tuning range of the laser by means of tilting the etalon, and (b) slope efficiency at 1342.4 nm.

Fig. 5.
Fig. 5.

Measured phase-matching temperature acceptance bandwidth of the PPKTP crystal shown as the generated output power at 593 nm as a function of crystal temperature. Close agreement with the theoretical curve is seen. Also shown is the simultaneous measurement of circulating intra-cavity power at 1064 nm. The data is averaged over 5 points using adjacent-averaging. The underlying decrease in intra-cavity power going from 50 to 24 degrees relates to alignment drift of the system during the course of the measurement.

Fig. 6.
Fig. 6.

Polarization characteristics of the fundamental and generated beams: measured power transmitted through a polarizing beamsplitter cube as it is rotated 360°.

Fig. 7.
Fig. 7.

Generated output power at 593 nm and intra-cavity circulating power at 1064 nm as a function of single-pass 1342 nm power.

Fig. 8.
Fig. 8.

Phase-matching diagrams for sum-frequency mixing between wavelengths centered around 1055 nm and 1342 nm for the full tuning ranges available from the lasers used. Dotted lines indicate iso-wavelength curves for the generated light, and blue crosses indicate phase-matching curves for the nonlinear crystal at different temperatures. (a) for PPKTP at three different temperatures, from left to right 18, 43 and 52 °C, (b) for type-I phase-matched LBO, (c) green, red and blue points show measured data for PPKTP at 18, 43 and 52 °C.

Metrics