Abstract

655 nm laser radiation with power of >60 mW is generated by frequency doubling of a broadband randomly-polarized 1.31-μm Raman fiber laser (RFL). The red power appears to grow linearly with increasing RFL power up to 7 W at efficiency comparable with that for single-frequency lasers. It has been shown that multiple sum-frequency mixing processes involving different RFL modes provide the main contribution to the output, which is enhanced by 2 times due to the modes stochasticity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, and O. I. Medvedkov, "Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber", Opt. Lett. 25, 402-404 (2000).
    [CrossRef]
  2. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, "2.1 µm continuous-wave Raman laser in GeO2 fiber", Opt. Lett. 32, 1848-1850 (2007).
    [CrossRef] [PubMed]
  3. Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
    [CrossRef]
  4. P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm", Electron. Lett. 37, 491-492 (2001).
    [CrossRef]
  5. S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, "All-fiber widely tunable Raman fiber laser with controlled output spectrum", Opt. Express 15, 8438-8443 (2007).
    [CrossRef] [PubMed]
  6. N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
    [CrossRef]
  7. M. Higashihata, K. Tochigi, Y. Nakata, and T. Okada "Application to the optical coherent tomography of fiber Raman laser", 5th CLEO/Pacific Rim 2003 (15-19 Dec. 2003), 1, 183 (2003).
  8. W. Hackenberg, D. Bonaccini, and D. Werner, "Fiber Raman laser development for multiple sodium laser guide star adaptive optics", Proc. SPIE 4839, 421-428 (2003).
    [CrossRef]
  9. Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser," Opt. Express 12,1843-1847 (2004).
    [CrossRef] [PubMed]
  10. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm", Opt. Express 13, 6772-6776 (2005).
    [CrossRef] [PubMed]
  11. Y. Feng, L. Taylor, and D. Bonaccini Calia, "20W CW, 4 MHz linewidth Raman fiber amplifier with SHG to 589 nm", Photonics West 2009, San Jose (postdeadline paper 7195-101).
  12. V. I. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Parenyi "High-power 1.24 ?m phosphosilicate-fiber-based laser pumped by laser diodes", Can. J. Phys. 78, 407-413 (2000).
    [CrossRef]
  13. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Spectral broadening in Raman fiber lasers", Opt. Lett. 31, 3007-3009 (2006).
    [CrossRef] [PubMed]
  14. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser", J. Opt. Soc. Am. B 24, 1729-1738 (2007).
    [CrossRef]
  15. J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007).
    [CrossRef]
  16. V. G. Dmitriev, L. V. Tarasov, Applied nonlinear optics (M., Radio i svyaz’, 1982) [in Russian].
  17. V. G. Dmitriev and Yu.V. Yur’ev, "Equations for second-harmonic generation under quasi-phase-matched interaction conditions in nonlinear crystals with a regular domain structure," Quantum Electron. 28, 1007-1010 (1998).
    [CrossRef]
  18. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams", J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  19. S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive indices of lithium niobate," Opt. Commun. 17, 332(1976) and  20, 188 (1977) (errata).
    [CrossRef]
  20. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, "Frequency-doubling of a CW fiber laser using PPKTP, PMgSLT, and PPMgLN," Opt. Express 15, 12882-12889 (2007).
    [CrossRef] [PubMed]
  21. J. Ducuing and N. Bloembergen, "Static fluctuations in nonlinear optical processes," Phys. Rev. 133, A1493-1502 (1964).
    [CrossRef]

2007

2006

2005

2004

2003

Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

W. Hackenberg, D. Bonaccini, and D. Werner, "Fiber Raman laser development for multiple sodium laser guide star adaptive optics", Proc. SPIE 4839, 421-428 (2003).
[CrossRef]

2001

P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm", Electron. Lett. 37, 491-492 (2001).
[CrossRef]

2000

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
[CrossRef]

V. I. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Parenyi "High-power 1.24 ?m phosphosilicate-fiber-based laser pumped by laser diodes", Can. J. Phys. 78, 407-413 (2000).
[CrossRef]

E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, and O. I. Medvedkov, "Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber", Opt. Lett. 25, 402-404 (2000).
[CrossRef]

1998

V. G. Dmitriev and Yu.V. Yur’ev, "Equations for second-harmonic generation under quasi-phase-matched interaction conditions in nonlinear crystals with a regular domain structure," Quantum Electron. 28, 1007-1010 (1998).
[CrossRef]

1976

S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive indices of lithium niobate," Opt. Commun. 17, 332(1976) and  20, 188 (1977) (errata).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams", J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1964

J. Ducuing and N. Bloembergen, "Static fluctuations in nonlinear optical processes," Phys. Rev. 133, A1493-1502 (1964).
[CrossRef]

Babin, S. A.

Bloembergen, N.

J. Ducuing and N. Bloembergen, "Static fluctuations in nonlinear optical processes," Phys. Rev. 133, A1493-1502 (1964).
[CrossRef]

Bonaccini, D.

W. Hackenberg, D. Bonaccini, and D. Werner, "Fiber Raman laser development for multiple sodium laser guide star adaptive optics", Proc. SPIE 4839, 421-428 (2003).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams", J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Bubnov, M. M.

Bufetov, I. A.

Chung, Y.

Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Churkin, D. V.

Clements, W. R. L.

V. I. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Parenyi "High-power 1.24 ?m phosphosilicate-fiber-based laser pumped by laser diodes", Can. J. Phys. 78, 407-413 (2000).
[CrossRef]

Cumberland, B. A.

Dajani, I.

Dianov, E. M.

Dmitriev, V. G.

V. G. Dmitriev and Yu.V. Yur’ev, "Equations for second-harmonic generation under quasi-phase-matched interaction conditions in nonlinear crystals with a regular domain structure," Quantum Electron. 28, 1007-1010 (1998).
[CrossRef]

Dronov, A. G.

Ducuing, J.

J. Ducuing and N. Bloembergen, "Static fluctuations in nonlinear optical processes," Phys. Rev. 133, A1493-1502 (1964).
[CrossRef]

Edwin, R. P.

S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive indices of lithium niobate," Opt. Commun. 17, 332(1976) and  20, 188 (1977) (errata).
[CrossRef]

Engelbrecht, R.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007).
[CrossRef]

Feng, Y.

Gapontsev, V. P.

Georgiev, D.

Grekov, M. V.

Hackenberg, W.

W. Hackenberg, D. Bonaccini, and D. Werner, "Fiber Raman laser development for multiple sodium laser guide star adaptive optics", Proc. SPIE 4839, 421-428 (2003).
[CrossRef]

Hagen, J.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007).
[CrossRef]

Han, Y.-G.

Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Huang, S.

Ismagulov, A. E.

Kablukov, S. I.

Kang, J. U.

Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Karpov, V. I.

V. I. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Parenyi "High-power 1.24 ?m phosphosilicate-fiber-based laser pumped by laser diodes", Can. J. Phys. 78, 407-413 (2000).
[CrossRef]

Kim, C.-S.

Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Kim, N. S.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams", J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Knize, R. J.

Kontur, F. J.

Li, C.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
[CrossRef]

Lu, Y.

Medvedkov, O. I.

Paek, U.-C.

Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Parenyi, S. B.

V. I. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Parenyi "High-power 1.24 ?m phosphosilicate-fiber-based laser pumped by laser diodes", Can. J. Phys. 78, 407-413 (2000).
[CrossRef]

Podivilov, E. V.

Popov, S. V.

Prabhu, M.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
[CrossRef]

Reeves-Hall, P. C.

P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm", Electron. Lett. 37, 491-492 (2001).
[CrossRef]

Riccius, H. D.

S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive indices of lithium niobate," Opt. Commun. 17, 332(1976) and  20, 188 (1977) (errata).
[CrossRef]

Rulkov, A. B.

Rybakov, M. A.

Schmauss, B.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007).
[CrossRef]

Shirakawa, A.

Siekiera, A.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007).
[CrossRef]

Smith, S. D.

S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive indices of lithium niobate," Opt. Commun. 17, 332(1976) and  20, 188 (1977) (errata).
[CrossRef]

Song, J.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
[CrossRef]

Taylor, J. R.

Ueda, K.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
[CrossRef]

Ueda, K.-I.

Vasiliev, S. A.

Vlasov, A. A.

Vyatkin, M. Y.

Welzel, O.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007).
[CrossRef]

Werner, D.

W. Hackenberg, D. Bonaccini, and D. Werner, "Fiber Raman laser development for multiple sodium laser guide star adaptive optics", Proc. SPIE 4839, 421-428 (2003).
[CrossRef]

Yur’ev, Yu.V.

V. G. Dmitriev and Yu.V. Yur’ev, "Equations for second-harmonic generation under quasi-phase-matched interaction conditions in nonlinear crystals with a regular domain structure," Quantum Electron. 28, 1007-1010 (1998).
[CrossRef]

Can. J. Phys.

V. I. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Parenyi "High-power 1.24 ?m phosphosilicate-fiber-based laser pumped by laser diodes", Can. J. Phys. 78, 407-413 (2000).
[CrossRef]

Electron. Lett.

P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm", Electron. Lett. 37, 491-492 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007).
[CrossRef]

Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams", J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive indices of lithium niobate," Opt. Commun. 17, 332(1976) and  20, 188 (1977) (errata).
[CrossRef]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

J. Ducuing and N. Bloembergen, "Static fluctuations in nonlinear optical processes," Phys. Rev. 133, A1493-1502 (1964).
[CrossRef]

Proc. SPIE

W. Hackenberg, D. Bonaccini, and D. Werner, "Fiber Raman laser development for multiple sodium laser guide star adaptive optics", Proc. SPIE 4839, 421-428 (2003).
[CrossRef]

Quantum Electron.

V. G. Dmitriev and Yu.V. Yur’ev, "Equations for second-harmonic generation under quasi-phase-matched interaction conditions in nonlinear crystals with a regular domain structure," Quantum Electron. 28, 1007-1010 (1998).
[CrossRef]

Other

V. G. Dmitriev, L. V. Tarasov, Applied nonlinear optics (M., Radio i svyaz’, 1982) [in Russian].

Y. Feng, L. Taylor, and D. Bonaccini Calia, "20W CW, 4 MHz linewidth Raman fiber amplifier with SHG to 589 nm", Photonics West 2009, San Jose (postdeadline paper 7195-101).

M. Higashihata, K. Tochigi, Y. Nakata, and T. Okada "Application to the optical coherent tomography of fiber Raman laser", 5th CLEO/Pacific Rim 2003 (15-19 Dec. 2003), 1, 183 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Fundamental wave (a) and SH (b) output spectra measured at different RFL powers. (c) Fundamental wave (boxes) and SH (circles) spectral widths together with SH width calculated from Eqs. (4),(5) (line).

Fig. 3.
Fig. 3.

Experimental data (points) and calculated SHG power P versus Pω =PRFL for single frequency (dashed line) and multiple frequency (solid line) fundamental wave. Inset: corresponding SHG efficiency P /Pω .

Fig. 4.
Fig. 4.

Second harmonic spectrum: experiment at Pω ≈7.1 W (dots), calculation from Eqs. 4, 5 for direct frequency doubling (dashed line) and the same with sum-frequency mixing (solid line). Inset: an example of SHG for N=4.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A 2 n z + 1 u A 2 n t = i σ 2 ( A 1 m 2 ξ n + j + k = n + 1 j k A 1 j A 1 k ) m = ( n + 1 ) 2 ξ n = [ ( 1 ) n + 1 + 1 ] 2 ,
I 2 n = ( σ 2 z ) 2 [ ( a 1 m 4 + 2 a 1 m 2 j + k = n + 1 j k a 1 j a 1 k × cos ( 2 φ 1 m φ 1 j φ 1 k ) ) ξ n +
+ 2 j k ( a 1 j a 1 k ) 2 + 2 j k p q a 1 j a 1 k a 1 p a 1 q × cos ( φ 1 j + φ 1 k φ 1 p φ 1 q ) ]
I 2 n = ( σ 2 z ) 2 [ a 1 m 4 ξ n + 2 j k ( a 1 j a 1 k ) 2 ]
I 2 n = ( σ 2 z ) 2 [ a 1 m 4 ξ n sinc 2 ( Δ k mm z / 2 ) + 2 j k ( a 1 j a 1 k sinc ( Δ k jk z / 2 ) ) 2 ] ,
z 2 π z , Δk ( Δk 2 π Λ ) π 2 ,
η = P 2 ω ( P ω ) 2 = 16 π 2 d eff 2 L λ ω 3 n ω n 2 ω ε 0 c h ,

Metrics