P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66, (2008).
[Crossref]
A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
[Crossref]
C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, 12, 6165V–6177 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
[Crossref]
T. Ando, H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, “Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” J. Lightwave Technol. 20, 1627–1634 (2002).
[Crossref]
Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853.
[PubMed]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002).
[Crossref]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol. 20, 1219–1231 (2002).
[Crossref]
F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media”, IEEE Microwave Guid. Wave Lett. 8, 223V–225 (1998).
[Crossref]
P. Lüsse, K. Ramm, and H.-G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett. 32, 38–39 (1996).
[Crossref]
R. Mittra and U. Pekel, “A new look an the perfectly matched layer PML concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guid. Wave Lett. 5, 84–86 (1995).
[Crossref]
C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994).
[Crossref]
C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” Proc. Inst. Electr. Eng. 141, 281–286 (1994).
[Crossref]
P. Lüsse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994).
[Crossref]
C. L. D. S. Sobrinho and A. J. Giarola, “Analysis of biaxially anisotropic dielectric waveguides with Gaussian-Gaussian index of refraction profiles by the finite-difference method,” IEE Proc.-H 140, 224–230 (1993).
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66, (2008).
[Crossref]
C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, 12, 6165V–6177 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
[Crossref]
C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” Proc. Inst. Electr. Eng. 141, 281–286 (1994).
[Crossref]
C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994).
[Crossref]
F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media”, IEEE Microwave Guid. Wave Lett. 8, 223V–225 (1998).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66, (2008).
[Crossref]
C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994).
[Crossref]
C. L. D. S. Sobrinho and A. J. Giarola, “Analysis of biaxially anisotropic dielectric waveguides with Gaussian-Gaussian index of refraction profiles by the finite-difference method,” IEE Proc.-H 140, 224–230 (1993).
P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).
C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” Proc. Inst. Electr. Eng. 141, 281–286 (1994).
[Crossref]
C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994).
[Crossref]
P. Lüsse, K. Ramm, and H.-G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett. 32, 38–39 (1996).
[Crossref]
P. Lüsse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994).
[Crossref]
R. Mittra and U. Pekel, “A new look an the perfectly matched layer PML concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guid. Wave Lett. 5, 84–86 (1995).
[Crossref]
R. Mittra and U. Pekel, “A new look an the perfectly matched layer PML concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guid. Wave Lett. 5, 84–86 (1995).
[Crossref]
P. Lüsse, K. Ramm, and H.-G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett. 32, 38–39 (1996).
[Crossref]
P. Lüsse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994).
[Crossref]
C. L. D. S. Sobrinho and A. J. Giarola, “Analysis of biaxially anisotropic dielectric waveguides with Gaussian-Gaussian index of refraction profiles by the finite-difference method,” IEE Proc.-H 140, 224–230 (1993).
C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” Proc. Inst. Electr. Eng. 141, 281–286 (1994).
[Crossref]
P. Lüsse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994).
[Crossref]
F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media”, IEEE Microwave Guid. Wave Lett. 8, 223V–225 (1998).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66, (2008).
[Crossref]
P. Lüsse, K. Ramm, and H.-G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett. 32, 38–39 (1996).
[Crossref]
P. Lüsse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66, (2008).
[Crossref]
C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” Proc. Inst. Electr. Eng. 141, 281–286 (1994).
[Crossref]
C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66, (2008).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).
C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, 12, 6165V–6177 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
[Crossref]
P. Lüsse, K. Ramm, and H.-G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett. 32, 38–39 (1996).
[Crossref]
C. L. D. S. Sobrinho and A. J. Giarola, “Analysis of biaxially anisotropic dielectric waveguides with Gaussian-Gaussian index of refraction profiles by the finite-difference method,” IEE Proc.-H 140, 224–230 (1993).
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66, (2008).
[Crossref]
F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media”, IEEE Microwave Guid. Wave Lett. 8, 223V–225 (1998).
[Crossref]
R. Mittra and U. Pekel, “A new look an the perfectly matched layer PML concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guid. Wave Lett. 5, 84–86 (1995).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994).
[Crossref]
P. Lüsse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994).
[Crossref]
T. Ando, H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, “Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” J. Lightwave Technol. 20, 1627–1634 (2002).
[Crossref]
N. Thomas, P. Sewell, and T. M. benson, “A new full-vectorial higher order finite-difference scheme for the modal analysis of rectangular dielectric waveguides,” J. Lightwave Technol. 25, 2563–2570 (2007).
[Crossref]
A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
[Crossref]
K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405–413 (2001).
[Crossref]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002).
[Crossref]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol. 20, 1219–1231 (2002).
[Crossref]
C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” Proc. Inst. Electr. Eng. 141, 281–286 (1994).
[Crossref]
P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).