Abstract

We demonstrate the suitability of microcavities based on circular grating resonators (CGRs) as fast switches. This type of optical resonator is characterized by a high quality factor and very small mode volume. The waveguide-coupled CGRs are fabricated with silicon-on-insulator technology compatible with standard complementary metal-oxide semiconductor (CMOS) processing. The linear optical properties of the CGRs are investigated by transmission spectroscopy. From 3D finite-difference time-domain simulations of isolated CGRs, we identify the measured resonances. We probe the spatial distribution and the parasitic losses of a resonant optical mode with scanning near-field optical microscopy. We observe fast all-optical switching within a few picoseconds by optically generating free charge carriers within the cavity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [PubMed]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [PubMed]
  3. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, "Polymer microdisk and microring lasers," Opt. Lett. 20, 2093 (1995).
    [PubMed]
  4. J. Niehusmann, A. V¨orckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-24-2861.
  5. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2007).
  6. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).
  7. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
    [PubMed]
  8. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: An analysis," J. Appl. Phys. 68, 1435 (1990).
  9. M. Toda, "Single-Mode Behavior of a Circular Grating for Potential Disk-Shaped DFB Lasers," IEEE J. Quantum. Electron. 26, 473 (1990).
  10. J. Scheuer and A. Yariv, "Optical annular resonators based on radial Bragg and photonic crystal reflectors," Opt. Express 11, 2736-2746 (2003).
    [PubMed]
  11. C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).
  12. A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.
  13. J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).
  14. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).
  15. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
    [PubMed]
  16. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003), http://link.aip.org/link/?APPLAB/83/1527/1.
  17. A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).
  18. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).
  19. E.-X. Ping, "Transmission of electromagnetic waves in planar, cylindrical, and spherical dielectric layer systems and their applications," J. Appl. Phys. 76, 7188-7194 (1994), http://link.aip.org/link/?JAP/76/7188/1.
  20. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.
    [PubMed]
  21. R. Harbers, N. Moll, D. Erni, G.-L. Bona, andW. Bchtold, "Efficient coupling into and out of high-Q resonators," J. Opt. Soc. Am. A 21, 1512 (2004).
  22. T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).
  23. S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001).
    [PubMed]
  24. R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).
  25. E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
  26. V. Sandoghdar, B. C. Buchler, P. Kramper, S. G¨otzinger, O. Benson, and M. Kafesaki, Photonic Crystals - Advances in Design, Fabrication and Characterisation, chap. 11, pp. 215-237 (Wiley-VCH, Weinheim, 2004).
  27. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430 (2007).
    [PubMed]
  28. M. Först, J. Niehusmann, T. Pl¨otzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silion-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007).
    [PubMed]
  29. M. Waldow, T. Pl¨otzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, "25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator," Opt. Express 16, 7693-7702 (2008).
    [PubMed]
  30. R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123-129 (1987).
  31. Y. Liu and H. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
    [PubMed]
  32. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).
  33. N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

2008 (1)

2007 (5)

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430 (2007).
[PubMed]

M. Först, J. Niehusmann, T. Pl¨otzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silion-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007).
[PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2007).

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).

2006 (2)

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

Y. Liu and H. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
[PubMed]

2005 (5)

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[PubMed]

2004 (5)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

J. Niehusmann, A. V¨orckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-24-2861.

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

R. Harbers, N. Moll, D. Erni, G.-L. Bona, andW. Bchtold, "Efficient coupling into and out of high-Q resonators," J. Opt. Soc. Am. A 21, 1512 (2004).

2003 (4)

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003), http://link.aip.org/link/?APPLAB/83/1527/1.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[PubMed]

J. Scheuer and A. Yariv, "Optical annular resonators based on radial Bragg and photonic crystal reflectors," Opt. Express 11, 2736-2746 (2003).
[PubMed]

2001 (3)

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.
[PubMed]

S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001).
[PubMed]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).

1995 (1)

1994 (1)

E.-X. Ping, "Transmission of electromagnetic waves in planar, cylindrical, and spherical dielectric layer systems and their applications," J. Appl. Phys. 76, 7188-7194 (1994), http://link.aip.org/link/?JAP/76/7188/1.

1992 (1)

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).

1990 (2)

T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: An analysis," J. Appl. Phys. 68, 1435 (1990).

M. Toda, "Single-Mode Behavior of a Circular Grating for Potential Disk-Shaped DFB Lasers," IEEE J. Quantum. Electron. 26, 473 (1990).

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123-129 (1987).

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[PubMed]

B¨achtold, W.

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[PubMed]

Bauer, C.

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123-129 (1987).

Benson, O.

S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001).
[PubMed]

Betzig, E.

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).

Bolten, J.

Bona, G.-L.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

R. Harbers, N. Moll, D. Erni, G.-L. Bona, andW. Bchtold, "Efficient coupling into and out of high-Q resonators," J. Opt. Soc. Am. A 21, 1512 (2004).

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

Buchler, B. C.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003), http://link.aip.org/link/?APPLAB/83/1527/1.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).

Demmerer, S.

S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001).
[PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

DeRose, G. A.

J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).

Dodabalapur, A.

Efavi, J. K.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Englund, D.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).

Erdogan, T.

T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: An analysis," J. Appl. Phys. 68, 1435 (1990).

Erni, D.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

R. Harbers, N. Moll, D. Erni, G.-L. Bona, andW. Bchtold, "Efficient coupling into and out of high-Q resonators," J. Opt. Soc. Am. A 21, 1512 (2004).

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

Faraon, A.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).

Finn, P. L.

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).

Först, M.

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).

G¨otzinger, S.

S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001).
[PubMed]

Georgiev, Y. M.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Giessen, H.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Gottheil, M.

Gottlob, H. D. B.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).

Green, W.M. J.

J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).

Guo, L. J.

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003), http://link.aip.org/link/?APPLAB/83/1527/1.

Hall, D. G.

T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: An analysis," J. Appl. Phys. 68, 1435 (1990).

Harbers, R.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

R. Harbers, N. Moll, D. Erni, G.-L. Bona, andW. Bchtold, "Efficient coupling into and out of high-Q resonators," J. Opt. Soc. Am. A 21, 1512 (2004).

Haring Bolivar, P.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

J. Niehusmann, A. V¨orckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-24-2861.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Henschel, W.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

J. Niehusmann, A. V¨orckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-24-2861.

Ilchenko, V. S.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

J¨ackel, H.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

Jebali, A.

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

Joannopoulos, J. D.

Johnson, S. G.

Jordan, R. H.

Katz, H. E.

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Kley, E.-B.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Koenderink, A. F.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Kurz, H.

Kuwata-Gonokami, M.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).

Lemme, M. C.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

Lipson, M.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430 (2007).
[PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[PubMed]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).

Liu, Y.

Mahrt, R. F.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Maleki, L.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Manipatruni, S.

Matsko, A. B.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Moll, N.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

R. Harbers, N. Moll, D. Erni, G.-L. Bona, andW. Bchtold, "Efficient coupling into and out of high-Q resonators," J. Opt. Soc. Am. A 21, 1512 (2004).

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

Mollenhauer, T.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

Moormann, C.

Niehusmann, J.

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[PubMed]

Notomi, M.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Ozawa, S.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[PubMed]

Ping, E.-X.

E.-X. Ping, "Transmission of electromagnetic waves in planar, cylindrical, and spherical dielectric layer systems and their applications," J. Appl. Phys. 76, 7188-7194 (1994), http://link.aip.org/link/?JAP/76/7188/1.

Pl¨otzing, T.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[PubMed]

Robin, F.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Sandoghdar, V.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001).
[PubMed]

Savchenkov, A. A.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Scherf, U.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Scheuer, J.

J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).

J. Scheuer and A. Yariv, "Optical annular resonators based on radial Bragg and photonic crystal reflectors," Opt. Express 11, 2736-2746 (2003).
[PubMed]

Schilling, M. L.

Schmidt, B.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430 (2007).
[PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[PubMed]

Schmitt, C.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Schnabel, B.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2007).

Shakya, J.

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Slusher, R. E.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123-129 (1987).

Strasser, P.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Toda, M.

M. Toda, "Single-Mode Behavior of a Circular Grating for Potential Disk-Shaped DFB Lasers," IEEE J. Quantum. Electron. 26, 473 (1990).

Tsang, H.

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

V¨orckel, A.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2007).

Vuckovic, J.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).

W¨uest, R.

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

Wahlbrink, T.

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).

Waldow, M.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Weiner, J. S.

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2007).

Xu, Q.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430 (2007).
[PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[PubMed]

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).

J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).

J. Scheuer and A. Yariv, "Optical annular resonators based on radial Bragg and photonic crystal reflectors," Opt. Express 11, 2736-2746 (2003).
[PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Advanced Materials (1)

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).

Appl. Phys. Lett. (7)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003), http://link.aip.org/link/?APPLAB/83/1527/1.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).

R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

IEEE J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).

IEEE J. Quantum. Electron. (2)

M. Toda, "Single-Mode Behavior of a Circular Grating for Potential Disk-Shaped DFB Lasers," IEEE J. Quantum. Electron. 26, 473 (1990).

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123-129 (1987).

IEEE J. Sel. Topics in Quantum Electron. (1)

J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).

J. Appl. Phys. (3)

E.-X. Ping, "Transmission of electromagnetic waves in planar, cylindrical, and spherical dielectric layer systems and their applications," J. Appl. Phys. 76, 7188-7194 (1994), http://link.aip.org/link/?JAP/76/7188/1.

A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.

T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: An analysis," J. Appl. Phys. 68, 1435 (1990).

J. Mod. Opt. (1)

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

J. Opt. Soc. Am. A (1)

Journal of Microscopy (1)

S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001).
[PubMed]

Microelectron. Eng. (1)

T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).

Nature (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[PubMed]

Nature Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2007).

Opt. Express (4)

Opt. Lett. (4)

Other (1)

V. Sandoghdar, B. C. Buchler, P. Kramper, S. G¨otzinger, O. Benson, and M. Kafesaki, Photonic Crystals - Advances in Design, Fabrication and Characterisation, chap. 11, pp. 215-237 (Wiley-VCH, Weinheim, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Circular grating resonator consisting of a central defect surrounded by concentric rings and in- and out-going waveguides. Zin is the number of rings defining the Bragg mirror and Zout is the number of additional surrounding rings confining scattered light. (b) Cross section of the circular grating. The duty cycle D is the ratio between the width of the trench q and the grating period a, i.e., D = q/a, and the total height is h.

Fig. 2.
Fig. 2.

SEM images of the CGR structure. The grating grooves appear as dark lines. (a) Overview with in- and out-coupling waveguides. (b),(c) Close-ups of the circular grating.

Fig. 3.
Fig. 3.

Measured transmission spectra of CGRs with the central defect radii r c = 830, 850 and 870nm. The arrow indicates the resonance at λ = 1562 nm which is further investigated by near-field optical microscopy and pump-and-probe.

Fig. 4.
Fig. 4.

The resonance wavelength as a function of the defect radius for the experimentally determined resonances as well as for isolated CGR calculated for different azimuthal orders m. Experimental data is indicated by black circles and lines, the calculations are shown as colored lines. Resonances with lower m feature a larger slope, e.g. the two very steep lines belong to resonances with m = 4 and m = 6. In order to avoid confusion only the resonances from the simulation which are near the experimental ones are labeled by their respective m. The calculated electric field distributions at the resonance wavelength of the modes m = 15, 16 and 19 with r c = 870nm are displayed above the graph.

Fig. 5.
Fig. 5.

Intensity distribution of the resonance at λ = 1562nm indicated in Fig. 3 measured with the SNOM. The layout of the CGR is schematically illustrated.

Fig. 6.
Fig. 6.

(a) Time-resolved transmission spectrum of the CGR (r c = 870nm) after optical excitation with 0.21 - nJ femtosecond pulses. The normalized intensity scale is colored in linear units. (b) Extracted shift Δλ of the center wavelength as function of time delay.

Fig. 7.
Fig. 7.

(a) Time-resolved wavelength shift of the CGR (r c = 870 nm) after optical excitation with pulse energies between 0.11 and 0.53nJ. (b) Extracted maximum wavelength shift Δλt = 0) as function of pulse energy. The dashed line is a linear fit to the data.

Metrics