Abstract

We experimentally demonstrate a simple widely tunable multiwavelength Brillouin/Erbium fiber laser that can be tuned over the entire C-band, thereby greatly improving the tuning range limitation faced by the previous Brillouin-erbium fiber laser architectures. Tuning range of 39 nm from 1527 nm to 1566 nm, which is only limited by the amplification bandwidth of the erbium gain was successfully achieved. At Brillouin pump wavelength of 1550 nm and 1480 nm laser pump and Brillouin pump powers of 130 mW and 2 mW respectively, all the generated output channels have peak power above 0 dBm, with the first output channel having a peak power of 8.52 dBm. The experimental set up that consists of only 4 optical components, is simple, devoid of the complex structure employed previously to enhance the tunability and feedback mechanism normally associated with multiwavelength Brillouin-erbium fiber laser sources. The generated output channels are stable, rigidly separated by 10 GHz (0.08 nm).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aloisio, F. Cevenini, and V. Izzo, "An approach to DWDM for real-time applications," IEEE Trans. Nucl. Sci. 51, 526-531 (2004).
    [CrossRef]
  2. F. Zarinetchi, S. P. Smith, and S. Ezekiel, "Stimulated Brillouin fiber optic gyroscope," Opt. Lett. 16, 229-231 (1991).
    [CrossRef] [PubMed]
  3. G. Whitenett, G. Steward, H. Yu, and B. Culshaw, "Investigation of tunable mode-locked fiber laser for application to multi point gas spectroscopy," J. Lightwave Technol. 22, 813-819 (2004).
    [CrossRef]
  4. S. Norcia, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, "Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals," Opt. Lett. 28, 1888-1890 (2003).
    [CrossRef] [PubMed]
  5. Y. Shen, X. Zhang, and K. Chen, "All - optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser," J. Lightwave Technol. 23, 1860-1865 (2005).
    [CrossRef]
  6. A. Kung, P-A. Nicati, and P. A. Robert, "Reciprocal and qausi-reciprocal Brillouin fiber-optic current sensors," IEEE Photon. Technol. Lett. 8, 1680-1682 (1996).
    [CrossRef]
  7. Y. Liu and D. Wang, "Wavelength tunable and amplitude-equilibrium dual-wavelength lasing sources with dual-pass Raman/Brillouin amplification configuration," Opt. Express 16, 3583-3588 (2008).
    [CrossRef] [PubMed]
  8. S. P. SmithF. Zarinetchi, and S. Ezekiel, "Narrow-linewidth stimulated Brillouin fiber laser and applications," Opt. Lett. 16, 393-95 (1991).
    [CrossRef] [PubMed]
  9. S. Yamashida and K. Hotala, "Multiwavelength erbium-doped fiber laser using intracavity elaton and cooled by liquid nitrogen," Electron Lett. 32, 1298-1299 (1992).
    [CrossRef]
  10. G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fiber laser" IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
    [CrossRef]
  11. G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/Erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
    [CrossRef] [PubMed]
  12. M. H. Al-Mansoori, A. Rahman, M. Kamil, F. R. M. Adikan, and M. A. Mahdi, "Widely tunable linear cavity multiwavelength Brillouin-Erbium fiber laser," Opt. Express 13, 3471-3476 (2005).
    [CrossRef] [PubMed]
  13. Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
    [CrossRef]
  14. N. M. Samsuri, A. K. Zamzuri, M. H Al-Mansoori, A. Ahmad, and M. A. Mahdi, "Brillouin-Erbium fiber laser with enhanced feedback coupling using common Erbium gain section," Opt. Express 16, 16475-16480 (2008).
    [CrossRef] [PubMed]
  15. M. H. Al-Mansoori and M. A. Mahdi, "Tunable range enhancement of Brillouin-erbium fiber laser utilizing Brillouin pump pre-amplification technique," Opt. Express 16, 7649-7654 (2008).
    [CrossRef] [PubMed]
  16. M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, "Novel multiwavelength L-Band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique," IEEE J. Sel. Top. Quantum Electron. (to be published).

2008

2005

2004

G. Whitenett, G. Steward, H. Yu, and B. Culshaw, "Investigation of tunable mode-locked fiber laser for application to multi point gas spectroscopy," J. Lightwave Technol. 22, 813-819 (2004).
[CrossRef]

A. Aloisio, F. Cevenini, and V. Izzo, "An approach to DWDM for real-time applications," IEEE Trans. Nucl. Sci. 51, 526-531 (2004).
[CrossRef]

Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

2003

1996

G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/Erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
[CrossRef] [PubMed]

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fiber laser" IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

A. Kung, P-A. Nicati, and P. A. Robert, "Reciprocal and qausi-reciprocal Brillouin fiber-optic current sensors," IEEE Photon. Technol. Lett. 8, 1680-1682 (1996).
[CrossRef]

1992

S. Yamashida and K. Hotala, "Multiwavelength erbium-doped fiber laser using intracavity elaton and cooled by liquid nitrogen," Electron Lett. 32, 1298-1299 (1992).
[CrossRef]

1991

Adikan, F. R. M.

Ahmad, A.

Al-Mansoori, M. H

Al-Mansoori, M. H.

Aloisio, A.

A. Aloisio, F. Cevenini, and V. Izzo, "An approach to DWDM for real-time applications," IEEE Trans. Nucl. Sci. 51, 526-531 (2004).
[CrossRef]

Cevenini, F.

A. Aloisio, F. Cevenini, and V. Izzo, "An approach to DWDM for real-time applications," IEEE Trans. Nucl. Sci. 51, 526-531 (2004).
[CrossRef]

Chen, K.

Cowle, G. J.

G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/Erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
[CrossRef] [PubMed]

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fiber laser" IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Culshaw, B.

Dolfi, D.

Ezekiel, S.

Hotala, K.

S. Yamashida and K. Hotala, "Multiwavelength erbium-doped fiber laser using intracavity elaton and cooled by liquid nitrogen," Electron Lett. 32, 1298-1299 (1992).
[CrossRef]

Hu, S.

Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Huignard, J.-P.

Izzo, V.

A. Aloisio, F. Cevenini, and V. Izzo, "An approach to DWDM for real-time applications," IEEE Trans. Nucl. Sci. 51, 526-531 (2004).
[CrossRef]

Kamil, M.

Kung, A.

A. Kung, P-A. Nicati, and P. A. Robert, "Reciprocal and qausi-reciprocal Brillouin fiber-optic current sensors," IEEE Photon. Technol. Lett. 8, 1680-1682 (1996).
[CrossRef]

Liu, Y.

Mahdi, M. A.

Nicati, P-A.

A. Kung, P-A. Nicati, and P. A. Robert, "Reciprocal and qausi-reciprocal Brillouin fiber-optic current sensors," IEEE Photon. Technol. Lett. 8, 1680-1682 (1996).
[CrossRef]

Norcia, S.

Premaratne, M.

M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, "Novel multiwavelength L-Band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique," IEEE J. Sel. Top. Quantum Electron. (to be published).

Rahman, A.

Robert, P. A.

A. Kung, P-A. Nicati, and P. A. Robert, "Reciprocal and qausi-reciprocal Brillouin fiber-optic current sensors," IEEE Photon. Technol. Lett. 8, 1680-1682 (1996).
[CrossRef]

Samsuri, N. M.

Shen, Y.

Smith, S. P.

Song, Y. J

Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Stepanov, D. Y.

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fiber laser" IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/Erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
[CrossRef] [PubMed]

Steward, G.

Tonda-Goldstein, S.

Wang, D.

Whitenett, G.

Xia, Y. X.

Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Yamashida, S.

S. Yamashida and K. Hotala, "Multiwavelength erbium-doped fiber laser using intracavity elaton and cooled by liquid nitrogen," Electron Lett. 32, 1298-1299 (1992).
[CrossRef]

Ye, Q. H.

Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Yu, H.

Zamzuri, A. K.

Zarinetchi, F.

Zhan, L.

Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Zhang, X.

Electron Lett.

S. Yamashida and K. Hotala, "Multiwavelength erbium-doped fiber laser using intracavity elaton and cooled by liquid nitrogen," Electron Lett. 32, 1298-1299 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, "Novel multiwavelength L-Band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique," IEEE J. Sel. Top. Quantum Electron. (to be published).

IEEE Photon. Technol. Lett.

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fiber laser" IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

A. Kung, P-A. Nicati, and P. A. Robert, "Reciprocal and qausi-reciprocal Brillouin fiber-optic current sensors," IEEE Photon. Technol. Lett. 8, 1680-1682 (1996).
[CrossRef]

Y. J Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin- Erbium fiber laser with a polarization-maintaining fiber sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

IEEE Trans. Nucl. Sci.

A. Aloisio, F. Cevenini, and V. Izzo, "An approach to DWDM for real-time applications," IEEE Trans. Nucl. Sci. 51, 526-531 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup of the enhanced multiwavelength BEFL.

Fig. 2.
Fig. 2.

Threshold power of the 1st Stokes signal at different BP power at BP wavelength of 1550 nm.

Fig. 3.
Fig. 3.

Output Spectrum of the MWBEFL at BP power of 2 mW and 1480 nm pump power of 130 mW.

Fig. 4.
Fig. 4.

Variation of output channels peak power with PP power at BP power of 2 mW.

Fig. 5.
Fig. 5.

Output peak power fluctuation at 130 mW pump power and, 2 mW BP power.

Fig. 6.
Fig. 6.

Variation of the OSNR with pump power at 2 mW BP power.

Fig. 7.
Fig. 7.

Tunable spectra of the generated output channels at 130 mW and 2 mW of the 1480 nm PP and BP powers respectively.

Fig. 8.
Fig. 8.

Total power of the Stokes signals against BP wavelength.

Fig. 9.
Fig. 9.

Output Spectra of the tunable MWBEFL at 130 mW of 1480 nm pump and 3 dBm of BP powers.

Fig. 10.
Fig. 10.

Magnified view of the output channels at BP wavelength of (a) 1530 nm, (b) 1540 nm, (c) 1550 nm and (d) 1566 nm.

Metrics