S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101, 024911 (2007).
[Crossref]
K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91, 071121 (2007).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, “Metamaterial transmission lines based on broad-side coupled spiral resonators,” Electron. Lett. 43, 530–532 (2007).
[Crossref]
F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antennas Propag. 55, 2258–2267 (2007).
[Crossref]
G. T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]
[PubMed]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength compact resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag. 55, 13–25 (2007).
[Crossref]
K. B. Alici and E. Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys. 101, 083104 (2007).
[Crossref]
K. B. Alici and E. Ozbay, “Radiation properties of a split ring resonator and monopole composite,” Physica Solidi Status B 244, 1192–1196 (2007).
[Crossref]
Erentok and R. Ziolkowski, “A hybrid optimization method to analyze metamaterial-based electrically small antennas,” IEEE Trans. Antennas Propag. 55, 731–741 (2007).
[Crossref]
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
Alu and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3332 (2007).
[Crossref]
[PubMed]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
K. Buell, H. Mosallaei, and K. Sarabandi, “A substrate for small patch antennas providing tunable miniaturization factors,” IEEE Trans. Microwave Theory Tech. 54, 135–146 (2006).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref]
[PubMed]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[Crossref]
Ourir, A. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88, 084103 (2006).
[Crossref]
J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microwave Theory Tech. 18, 265–271 (2006).
[Crossref]
J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, “Frequency and beam reconfigurable antenna using Photoconducting switches,” IEEE Trans. Antennas Propag. 54, 449–454 (2006).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
R. R. A. Syms, I. R. Young, and L. Solymar, “Low loss magneto-inductive waves,” J. Phys. D 39, 3945–3951 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving matematerials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]
S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[Crossref]
[PubMed]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
J.D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69, 014402 (2004).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
L. Zhang, G. Tuttle, and C. M. Soukoulis, “GHz magnetic response of split ring resonators,” Photonics Nanostruct. 2, 155–159 (2004).
[Crossref]
N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]
Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[Crossref]
[PubMed]
M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39, 215–217 (2003).
[Crossref]
G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental Verification and simulation of negative index of refration using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]
D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]
[PubMed]
H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]
D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]
K. B. Alici and E. Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys. 101, 083104 (2007).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91, 071121 (2007).
[Crossref]
K. B. Alici and E. Ozbay, “Radiation properties of a split ring resonator and monopole composite,” Physica Solidi Status B 244, 1192–1196 (2007).
[Crossref]
K. B. Alici and E. Ozbay, “Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime,” submitted.
K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D: Appl. Phys. 41, 135011.
Alu and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3332 (2007).
[Crossref]
[PubMed]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength compact resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag. 55, 13–25 (2007).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101, 024911 (2007).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, “Metamaterial transmission lines based on broad-side coupled spiral resonators,” Electron. Lett. 43, 530–532 (2007).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
J.D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69, 014402 (2004).
[Crossref]
Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. (Wiley, New York, 2003), 57–63.
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]
Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. (Wiley, New York, 2003), 57–63.
F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antennas Propag. 55, 2258–2267 (2007).
[Crossref]
K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91, 071121 (2007).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength compact resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag. 55, 13–25 (2007).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[Crossref]
F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, “Metamaterial transmission lines based on broad-side coupled spiral resonators,” Electron. Lett. 43, 530–532 (2007).
[Crossref]
J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microwave Theory Tech. 18, 265–271 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]
K. Buell, H. Mosallaei, and K. Sarabandi, “A substrate for small patch antennas providing tunable miniaturization factors,” IEEE Trans. Microwave Theory Tech. 54, 135–146 (2006).
[Crossref]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, “Frequency and beam reconfigurable antenna using Photoconducting switches,” IEEE Trans. Antennas Propag. 54, 449–454 (2006).
[Crossref]
Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[Crossref]
[PubMed]
N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength compact resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag. 55, 13–25 (2007).
[Crossref]
Alu and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3332 (2007).
[Crossref]
[PubMed]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[Crossref]
S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
Erentok and R. Ziolkowski, “A hybrid optimization method to analyze metamaterial-based electrically small antennas,” IEEE Trans. Antennas Propag. 55, 731–741 (2007).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, “Metamaterial transmission lines based on broad-side coupled spiral resonators,” Electron. Lett. 43, 530–532 (2007).
[Crossref]
J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microwave Theory Tech. 18, 265–271 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microwave Theory Tech. 18, 265–271 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, “Metamaterial transmission lines based on broad-side coupled spiral resonators,” Electron. Lett. 43, 530–532 (2007).
[Crossref]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental Verification and simulation of negative index of refration using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003).
[Crossref]
[PubMed]
S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving matematerials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]
[PubMed]
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving matematerials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[Crossref]
[PubMed]
N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]
N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]
G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental Verification and simulation of negative index of refration using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003).
[Crossref]
[PubMed]
Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[Crossref]
[PubMed]
N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]
S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving matematerials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental Verification and simulation of negative index of refration using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003).
[Crossref]
[PubMed]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
Ourir, A. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88, 084103 (2006).
[Crossref]
Ourir, A. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88, 084103 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
J.D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69, 014402 (2004).
[Crossref]
J.D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69, 014402 (2004).
[Crossref]
F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, “Metamaterial transmission lines based on broad-side coupled spiral resonators,” Electron. Lett. 43, 530–532 (2007).
[Crossref]
J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microwave Theory Tech. 18, 265–271 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
J.D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69, 014402 (2004).
[Crossref]
K. Buell, H. Mosallaei, and K. Sarabandi, “A substrate for small patch antennas providing tunable miniaturization factors,” IEEE Trans. Microwave Theory Tech. 54, 135–146 (2006).
[Crossref]
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
Ourir, A. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88, 084103 (2006).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101, 024911 (2007).
[Crossref]
K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91, 071121 (2007).
[Crossref]
K. B. Alici and E. Ozbay, “Radiation properties of a split ring resonator and monopole composite,” Physica Solidi Status B 244, 1192–1196 (2007).
[Crossref]
K. B. Alici and E. Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys. 101, 083104 (2007).
[Crossref]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
K. B. Alici and E. Ozbay, “Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime,” submitted.
K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D: Appl. Phys. 41, 135011.
J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, “Frequency and beam reconfigurable antenna using Photoconducting switches,” IEEE Trans. Antennas Propag. 54, 449–454 (2006).
[Crossref]
G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental Verification and simulation of negative index of refration using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003).
[Crossref]
[PubMed]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref]
[PubMed]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]
[PubMed]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]
S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving matematerials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]
K. Buell, H. Mosallaei, and K. Sarabandi, “A substrate for small patch antennas providing tunable miniaturization factors,” IEEE Trans. Microwave Theory Tech. 54, 135–146 (2006).
[Crossref]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref]
[PubMed]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39, 215–217 (2003).
[Crossref]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
R. R. A. Syms, I. R. Young, and L. Solymar, “Low loss magneto-inductive waves,” J. Phys. D 39, 3945–3951 (2006).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39, 215–217 (2003).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[Crossref]
[PubMed]
N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]
L. Zhang, G. Tuttle, and C. M. Soukoulis, “GHz magnetic response of split ring resonators,” Photonics Nanostruct. 2, 155–159 (2004).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]
[PubMed]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
R. R. A. Syms, I. R. Young, and L. Solymar, “Low loss magneto-inductive waves,” J. Phys. D 39, 3945–3951 (2006).
[Crossref]
G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental Verification and simulation of negative index of refration using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003).
[Crossref]
[PubMed]
S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antennas Propag. 55, 2258–2267 (2007).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
L. Zhang, G. Tuttle, and C. M. Soukoulis, “GHz magnetic response of split ring resonators,” Photonics Nanostruct. 2, 155–159 (2004).
[Crossref]
J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, “Frequency and beam reconfigurable antenna using Photoconducting switches,” IEEE Trans. Antennas Propag. 54, 449–454 (2006).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength compact resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag. 55, 13–25 (2007).
[Crossref]
K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91, 071121 (2007).
[Crossref]
F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antennas Propag. 55, 2258–2267 (2007).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[Crossref]
M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39, 215–217 (2003).
[Crossref]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]
R. R. A. Syms, I. R. Young, and L. Solymar, “Low loss magneto-inductive waves,” J. Phys. D 39, 3945–3951 (2006).
[Crossref]
M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39, 215–217 (2003).
[Crossref]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]
[PubMed]
L. Zhang, G. Tuttle, and C. M. Soukoulis, “GHz magnetic response of split ring resonators,” Photonics Nanostruct. 2, 155–159 (2004).
[Crossref]
D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
Erentok and R. Ziolkowski, “A hybrid optimization method to analyze metamaterial-based electrically small antennas,” IEEE Trans. Antennas Propag. 55, 731–741 (2007).
[Crossref]
K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91, 071121 (2007).
[Crossref]
N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]
Ourir, A. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88, 084103 (2006).
[Crossref]
B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[Crossref]
F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, “Metamaterial transmission lines based on broad-side coupled spiral resonators,” Electron. Lett. 43, 530–532 (2007).
[Crossref]
Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
[Crossref]
M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39, 215–217 (2003).
[Crossref]
F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antennas Propag. 55, 2258–2267 (2007).
[Crossref]
J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, “Frequency and beam reconfigurable antenna using Photoconducting switches,” IEEE Trans. Antennas Propag. 54, 449–454 (2006).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength compact resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag. 55, 13–25 (2007).
[Crossref]
Erentok and R. Ziolkowski, “A hybrid optimization method to analyze metamaterial-based electrically small antennas,” IEEE Trans. Antennas Propag. 55, 731–741 (2007).
[Crossref]
Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[Crossref]
D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]
K. Buell, H. Mosallaei, and K. Sarabandi, “A substrate for small patch antennas providing tunable miniaturization factors,” IEEE Trans. Microwave Theory Tech. 54, 135–146 (2006).
[Crossref]
J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marques, “Microwave filters with improved stopband based on sub-wavelentgh resonators,” IEEE Trans. Microwave Theory Tech. 53, 1997–2006 (2005).
[Crossref]
J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microwave Theory Tech. 18, 265–271 (2006).
[Crossref]
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microwave Theory Tech. 55, 2865–2873 (2007).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101, 024911 (2007).
[Crossref]
K. B. Alici and E. Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys. 101, 083104 (2007).
[Crossref]
R. R. A. Syms, I. R. Young, and L. Solymar, “Low loss magneto-inductive waves,” J. Phys. D 39, 3945–3951 (2006).
[Crossref]
K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D: Appl. Phys. 41, 135011.
F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microw. Opt. Techn. Lett. 42, 386–388 (2004).
[Crossref]
S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving matematerials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]
S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[Crossref]
[PubMed]
Alu and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3332 (2007).
[Crossref]
[PubMed]
S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative e and μ and dielectric photonic crystal checkerboards,” Photonics Nanostruct. 5, 63–72 (2007).
[Crossref]
L. Zhang, G. Tuttle, and C. M. Soukoulis, “GHz magnetic response of split ring resonators,” Photonics Nanostruct. 2, 155–159 (2004).
[Crossref]
H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73, 224406 (2006).
[Crossref]
J.D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69, 014402 (2004).
[Crossref]
M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[Crossref]
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref]
[PubMed]
G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental Verification and simulation of negative index of refration using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003).
[Crossref]
[PubMed]
Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[Crossref]
[PubMed]
K. B. Alici and E. Ozbay, “Radiation properties of a split ring resonator and monopole composite,” Physica Solidi Status B 244, 1192–1196 (2007).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref]
[PubMed]
K. B. Alici and E. Ozbay, “Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime,” submitted.
User Manual, Version 5.0, CST GmbH, Darmstadt, Germany, 2005, http://www.cst.de.
Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. (Wiley, New York, 2003), 57–63.