Abstract

The evolution of the spectrum of a singly resonant optical parametric oscillator based on an MgO-doped periodically poled stoichiometric lithium tantalate crystal is observed when the pump power is varied. The onset of cascade Raman lasing due to stimulated Raman scattering in the nonlinear crystal is analyzed. Spurious frequency doubling and sum-frequency generation phenomena are observed and understood. A strong reduction of the intracavity Raman scattering is obtained by a careful adjustment of the cavity losses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Strossner, A. Peters, J. Mlynek, and S. Schiller, J.-P. Meyn, and R. Wallenstein, "Single-frequency continuouswave radiation from 0.77 to 1.73 m generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3," Opt. Lett. 24, 1602-1604 (1999).
    [CrossRef]
  2. J.-M. Melkonian, T.-H. My, F. Bretenaker, and C. Drag, "High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red," Opt. Lett. 32, 518-520 (2007).
    [CrossRef] [PubMed]
  3. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, "1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT," Opt. Lett. 32, 2623-2625 (2007).
    [CrossRef] [PubMed]
  4. G.K. Samanta, and M. Ebrahim-Zadeh, "Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling," Opt. Express 16, 6883-6888 (2008).
    [CrossRef] [PubMed]
  5. S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 57, 2096-2113 (1969).
    [CrossRef]
  6. A. V. Okishev and J. D. Zuegel, "Intracavity-pumped Raman laser action in a mid-IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator," Opt. Express 14, 12169-12173 (2006).
    [CrossRef] [PubMed]
  7. A. Henderson and R. Stafford, "Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator," Opt. Lett. 32, 1281-1283 (2007).
    [CrossRef] [PubMed]
  8. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
    [CrossRef]
  9. G. K. Samanta and M. Ebrahim-Zadeh, "Continuous-wave, single-frequency, solid-state blue source for the 425- 489 nm spectral range," Opt. Lett. 33, 1228-1230 (2008).
    [CrossRef] [PubMed]
  10. T.-H. My, C. Drag, and F. Bretenaker, "Single-frequency and tunable operation of a continuous intracavityfrequency- doubled singly resonant optical parametric oscillator," Opt. Lett. 33, 1455-1457 (2008).
    [CrossRef] [PubMed]
  11. W. D. Johnston, Jr. and I. P. Kaminow, "Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3," Phys. Rev. 168,1045-1054 (1968).
    [CrossRef]
  12. A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, "Light scattering by lithium tantalate at room temperature," Phys. Rev. B 13,4907-4917 (1976).
    [CrossRef]
  13. R. W. Boyd, Nonlinear Optics, 3rd edition (Academic Press, 2008).
  14. A. Henderson and R. Stafford, "Intra-cavity power effects in singly resonant cw OPOs," Appl. Phys. B. 85,181-184 (2006).
    [CrossRef]
  15. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, "Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate," Opt. Lett. 28, 194-196 (2003).
    [CrossRef] [PubMed]
  16. J. Hirohashi, V. Pasiskevicius, and F. Laurell, "Picosecond blue-light-induced infrared absorption in singledomain and periodically polled ferroelectrics," J. Appl. Phys. 101, 033105 (2007).
    [CrossRef]

2009

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
[CrossRef]

2008

2007

2006

2003

1999

1976

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, "Light scattering by lithium tantalate at room temperature," Phys. Rev. B 13,4907-4917 (1976).
[CrossRef]

1969

S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 57, 2096-2113 (1969).
[CrossRef]

1968

W. D. Johnston, Jr. and I. P. Kaminow, "Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3," Phys. Rev. 168,1045-1054 (1968).
[CrossRef]

Blau, P.

Bretenaker, F.

Bruner, A.

Chaves, A.

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, "Light scattering by lithium tantalate at room temperature," Phys. Rev. B 13,4907-4917 (1976).
[CrossRef]

Drag, C.

Ebrahim-Zadeh, M.

Eger, D.

Fayaz, G. R.

Halonen, L.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
[CrossRef]

Harren, F. J. M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
[CrossRef]

Harris, S. E.

S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 57, 2096-2113 (1969).
[CrossRef]

Henderson, A.

Hirohashi, J.

J. Hirohashi, V. Pasiskevicius, and F. Laurell, "Picosecond blue-light-induced infrared absorption in singledomain and periodically polled ferroelectrics," J. Appl. Phys. 101, 033105 (2007).
[CrossRef]

Johnston, W. D.

W. D. Johnston, Jr. and I. P. Kaminow, "Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3," Phys. Rev. 168,1045-1054 (1968).
[CrossRef]

Kaminow, I. P.

W. D. Johnston, Jr. and I. P. Kaminow, "Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3," Phys. Rev. 168,1045-1054 (1968).
[CrossRef]

Katz, M.

Laurell, F.

J. Hirohashi, V. Pasiskevicius, and F. Laurell, "Picosecond blue-light-induced infrared absorption in singledomain and periodically polled ferroelectrics," J. Appl. Phys. 101, 033105 (2007).
[CrossRef]

Melkonian, J.-M.

Meyn, J.-P.

Mlynek, J.

My, T.-H.

Okishev, A. V.

Oron, M. B.

Pasiskevicius, V.

J. Hirohashi, V. Pasiskevicius, and F. Laurell, "Picosecond blue-light-induced infrared absorption in singledomain and periodically polled ferroelectrics," J. Appl. Phys. 101, 033105 (2007).
[CrossRef]

Peltola, J.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
[CrossRef]

Penna, A. F.

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, "Light scattering by lithium tantalate at room temperature," Phys. Rev. B 13,4907-4917 (1976).
[CrossRef]

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
[CrossRef]

Peters, A.

Ruschin, S.

Samanta, G. K.

Samanta, G.K.

Schiller, S.

Stafford, R.

Strossner, U.

Vainio, M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
[CrossRef]

Wallenstein, R.

Zuegel, J. D.

Appl. Phys. B

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Thermal effects in singly resonant continuouswave optical parametric oscillators," Appl. Phys. B 94, 411-427 (2009).
[CrossRef]

Appl. Phys. B.

A. Henderson and R. Stafford, "Intra-cavity power effects in singly resonant cw OPOs," Appl. Phys. B. 85,181-184 (2006).
[CrossRef]

J. Appl. Phys.

J. Hirohashi, V. Pasiskevicius, and F. Laurell, "Picosecond blue-light-induced infrared absorption in singledomain and periodically polled ferroelectrics," J. Appl. Phys. 101, 033105 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

U. Strossner, A. Peters, J. Mlynek, and S. Schiller, J.-P. Meyn, and R. Wallenstein, "Single-frequency continuouswave radiation from 0.77 to 1.73 m generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3," Opt. Lett. 24, 1602-1604 (1999).
[CrossRef]

J.-M. Melkonian, T.-H. My, F. Bretenaker, and C. Drag, "High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red," Opt. Lett. 32, 518-520 (2007).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, "1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT," Opt. Lett. 32, 2623-2625 (2007).
[CrossRef] [PubMed]

G. K. Samanta and M. Ebrahim-Zadeh, "Continuous-wave, single-frequency, solid-state blue source for the 425- 489 nm spectral range," Opt. Lett. 33, 1228-1230 (2008).
[CrossRef] [PubMed]

T.-H. My, C. Drag, and F. Bretenaker, "Single-frequency and tunable operation of a continuous intracavityfrequency- doubled singly resonant optical parametric oscillator," Opt. Lett. 33, 1455-1457 (2008).
[CrossRef] [PubMed]

A. Henderson and R. Stafford, "Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator," Opt. Lett. 32, 1281-1283 (2007).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, "Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate," Opt. Lett. 28, 194-196 (2003).
[CrossRef] [PubMed]

Phys. Rev.

W. D. Johnston, Jr. and I. P. Kaminow, "Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3," Phys. Rev. 168,1045-1054 (1968).
[CrossRef]

Phys. Rev. B

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, "Light scattering by lithium tantalate at room temperature," Phys. Rev. B 13,4907-4917 (1976).
[CrossRef]

Proc. IEEE

S. E. Harris, "Tunable optical parametric oscillators," Proc. IEEE 57, 2096-2113 (1969).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics, 3rd edition (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of SROPO configuration.

Fig. 2.
Fig. 2.

Measured evolutions of the pump depletion and signal power as a function of the pump power. The cw SROPO cavity consists of four highly reflecting mirrors at the idler wavelength.

Fig. 3.
Fig. 3.

Spectrum of the combined OPO and Raman oscillation at differents pump powers. Resolution: 2.0 nm.

Fig. 4.
Fig. 4.

OPO output spectrum for a 5 W pump power, corresponding to 10 times threshold. (a) Infrared part of the spectrum. Resolution: 1.0 nm. (b) Visible part of the spectrum. Resolution: 0.3 nm.

Fig. 5.
Fig. 5.

For the configuration where the cavity contains one output coupling mirror (a) Signal power and extracted idler power as a function of pump power (b) Idler spectrum at maximum pump power of 7.5 W. Resolution: 0.1 nm

Fig. 6.
Fig. 6.

(a) Idler spectrum as a function of pump power. Resolution: 1.0 nm (b) Evolution of the crystal temperature, deduced from the idler wavelength, and of the intracavity idler power versus pump power. These results were obtained with the four highly reflecting mirrors.

Tables (1)

Tables Icon

Table 1. Explanation of the origin of the different peaks at wavelengths λ3 emitted in the visible [see Fig. 4(b)]. The infrared wavelengths λ1 and λ2 are taken from Fig. 4(a). SHG holds for Second Harmonic Generation and SFG for Sum Frequency Generation.

Metrics