Abstract

We demonstrate the generation of a high power ultrabroadband supercontinuum by coupling the uncompressed pulses from a Ti:Sapphire Chirped-pulse oscillator into a photonic crystal fibre that exhibits a highly anomalous dispersion at the centre wavelength of the laser. Our simulations show that the pulses first undergo quasi-linear compression before the actual supercontinuum is generated by soliton fission dynamics. This two-step process results in an optical spectrum that is remarkably independent on the input pulse energy. Moreover, the reduced peak intensity at the input facet of the fibre mitigates damage problems and allows the generation of high power white-light radiation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fernandez, T. Fuji, A. Poppe, A. Fuerbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366 (2004).
    [CrossRef] [PubMed]
  2. E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
    [CrossRef]
  3. D. Herriott, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523 (1964).
    [CrossRef]
  4. A. Fuerbach, M. Lenner, and M. Withford, "Photonic band gap fibre compressed chirped-pulse oscillator," New J. Phys. 9, 248 (2007)
    [CrossRef]
  5. R. R Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer 2006).
    [CrossRef]
  6. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  7. P. S. J. Russell, "Photonic crystal fibers," Science 299, 358 (2003).
    [CrossRef] [PubMed]
  8. J. K. Ranka, R. S. Windeler, and A. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25 (2000).
    [CrossRef]
  9. P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
    [CrossRef]
  10. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  11. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
    [CrossRef]
  12. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  13. Z. Zhu and T. Brown, "Effect of frequency chirping on supercontinuum generation in photonic crystal fibers," Opt. Express 12, 689-694 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-689
    [CrossRef] [PubMed]
  14. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165 (2002).
    [CrossRef]
  15. Q1. X. Fu, L. Qian, S. Wen, and D. Fan, "Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre," J. Opt. A 6, 1012 (2004).
    [CrossRef]
  16. M. Tianprateep, J. Tada, and F. Kannari, "Influence of Polarization and Pulse Shape of Femtosecond Initial Laser Pulses on Spectral Broadening in Microstructure Fibers," Opt. Rev. 12, 179 (2005).
    [CrossRef]
  17. B. Schenkel, R. Paschotta, and U. Keller, ""Pulse compression with supercontinuum generation in microstructure fibers," J. Opt. Soc. Am. B 22, 687-693 (2005)
    [CrossRef]
  18. M. Lenzner, "Femtosecond Laser-Induced Damage of Dielectrics," Int. J. Mod. Phys. B 13, 1559 (1999).
    [CrossRef]
  19. D. Krylov, L. Leng, K. Bergmann, J. C. Bronski, and J. N. Kutz, "Observation of the breakup of a prechirped N-soliton in an optical fiber," Opt. Lett. 24, 1191 (1999).
    [CrossRef]
  20. Q2. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 (2007).
    [CrossRef]
  21. Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE Photon. Technol. Lett. QE-23, 510 (1987).
  22. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic Press, San Diego 1995).
  23. A. V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171 (2002).
    [CrossRef]
  24. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibres," Opt. Express 12, 124-135 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-1-124
    [CrossRef] [PubMed]
  25. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]

2008

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

2007

P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
[CrossRef]

A. Fuerbach, M. Lenner, and M. Withford, "Photonic band gap fibre compressed chirped-pulse oscillator," New J. Phys. 9, 248 (2007)
[CrossRef]

Q2. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 (2007).
[CrossRef]

2006

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

M. Tianprateep, J. Tada, and F. Kannari, "Influence of Polarization and Pulse Shape of Femtosecond Initial Laser Pulses on Spectral Broadening in Microstructure Fibers," Opt. Rev. 12, 179 (2005).
[CrossRef]

B. Schenkel, R. Paschotta, and U. Keller, ""Pulse compression with supercontinuum generation in microstructure fibers," J. Opt. Soc. Am. B 22, 687-693 (2005)
[CrossRef]

2004

2003

P. S. J. Russell, "Photonic crystal fibers," Science 299, 358 (2003).
[CrossRef] [PubMed]

2002

2000

1999

1997

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

1987

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE Photon. Technol. Lett. QE-23, 510 (1987).

1986

1964

Antal, P.

P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
[CrossRef]

Apolonski, A.

Bergmann, K.

Botten, L. C.

Bronski, J. C.

Brown, T.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Cristiani, I.

de Sterke, C. M.

Degiorgio, V.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Dombi, P.

P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
[CrossRef]

Drexler, W.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Fan, D.

Q1. X. Fu, L. Qian, S. Wen, and D. Fan, "Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre," J. Opt. A 6, 1012 (2004).
[CrossRef]

Fekete, J.

P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
[CrossRef]

Fernandez, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fuerbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366 (2004).
[CrossRef] [PubMed]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Fu, X.

Q1. X. Fu, L. Qian, S. Wen, and D. Fan, "Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre," J. Opt. A 6, 1012 (2004).
[CrossRef]

Fuerbach, A.

Fuji, T.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Gorbach, A. V.

Q2. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 (2007).
[CrossRef]

Graf, R.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Guelachvili, G.

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

Hasegawa, A.

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE Photon. Technol. Lett. QE-23, 510 (1987).

Herriott, D.

Herrmann, J.

Husakou, A. V.

Kalashnikov, V. L.

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kannari, F.

M. Tianprateep, J. Tada, and F. Kannari, "Influence of Polarization and Pulse Shape of Femtosecond Initial Laser Pulses on Spectral Broadening in Microstructure Fibers," Opt. Rev. 12, 179 (2005).
[CrossRef]

Keller, U.

Knight, J. C.

Kodama, Y.

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE Photon. Technol. Lett. QE-23, 510 (1987).

Kogelnik, H.

Kompfner, R.

Krausz, F.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Krylov, D.

Kuhlmey, B. T.

Kutz, J. N.

Leng, L.

Lenner, M.

A. Fuerbach, M. Lenner, and M. Withford, "Photonic band gap fibre compressed chirped-pulse oscillator," New J. Phys. 9, 248 (2007)
[CrossRef]

Lenzner, M.

M. Lenzner, "Femtosecond Laser-Induced Damage of Dielectrics," Int. J. Mod. Phys. B 13, 1559 (1999).
[CrossRef]

Mandon, J.

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

Maystre, D.

McPhedran, R. C.

Mitschke, F. M.

Mollenauer, L. F.

Naumov, S.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Paschotta, R.

Picque, N.

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Poppe, A.

Povazay, B.

Qian, L.

Q1. X. Fu, L. Qian, S. Wen, and D. Fan, "Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre," J. Opt. A 6, 1012 (2004).
[CrossRef]

Ranka, J. K.

Renversez, G.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Russell, P. S. J.

Schenkel, B.

Skryabin, D. V.

Q2. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 (2007).
[CrossRef]

Sorokin, E.

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

Sorokina, I. T.

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

Stentz, A.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Szipoecs, R.

P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
[CrossRef]

Tada, J.

M. Tianprateep, J. Tada, and F. Kannari, "Influence of Polarization and Pulse Shape of Femtosecond Initial Laser Pulses on Spectral Broadening in Microstructure Fibers," Opt. Rev. 12, 179 (2005).
[CrossRef]

Tartara, L.

Tediosi, R.

Tianprateep, M.

M. Tianprateep, J. Tada, and F. Kannari, "Influence of Polarization and Pulse Shape of Femtosecond Initial Laser Pulses on Spectral Broadening in Microstructure Fibers," Opt. Rev. 12, 179 (2005).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Unterhuber, A.

Varallyay, Z.

P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
[CrossRef]

Wadsworth, W. J.

Wen, S.

Q1. X. Fu, L. Qian, S. Wen, and D. Fan, "Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre," J. Opt. A 6, 1012 (2004).
[CrossRef]

White, T. P.

Windeler, R. S.

Withford, M.

A. Fuerbach, M. Lenner, and M. Withford, "Photonic band gap fibre compressed chirped-pulse oscillator," New J. Phys. 9, 248 (2007)
[CrossRef]

Zhu, Z.

Appl. Opt.

Appl. Phys. B

P. Dombi, P. Antal, J. Fekete, R. Szipoecs, and Z. Varallyay, "Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator," Appl. Phys. B 88, 379 (2007)
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE Photon. Technol. Lett. QE-23, 510 (1987).

Int. J. Mod. Phys. B

M. Lenzner, "Femtosecond Laser-Induced Damage of Dielectrics," Int. J. Mod. Phys. B 13, 1559 (1999).
[CrossRef]

J. Opt. A

Q1. X. Fu, L. Qian, S. Wen, and D. Fan, "Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre," J. Opt. A 6, 1012 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

Q2. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 (2007).
[CrossRef]

New J. Phys.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

A. Fuerbach, M. Lenner, and M. Withford, "Photonic band gap fibre compressed chirped-pulse oscillator," New J. Phys. 9, 248 (2007)
[CrossRef]

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, "Cr:YAG chirped-pulse oscillator," New J. Phys. 10, 083022 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

M. Tianprateep, J. Tada, and F. Kannari, "Influence of Polarization and Pulse Shape of Femtosecond Initial Laser Pulses on Spectral Broadening in Microstructure Fibers," Opt. Rev. 12, 179 (2005).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Rev. Sci. Instrum.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Science

P. S. J. Russell, "Photonic crystal fibers," Science 299, 358 (2003).
[CrossRef] [PubMed]

Other

R. R Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer 2006).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic Press, San Diego 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Temporal (a) and spectral (b) intensity and phase of the pulses emitted by the CPO (without prism compressor) as measured by FROG.

Fig. 2.
Fig. 2.

Dispersion of the PCF as calculated by multipole simulations. The inset shows an SEM image of the fibre.

Fig. 3.
Fig. 3.

Temporal shape of low energy (1 nJ) pulses after a propagation distance of 15 mm. Black: Measured by FROG. Red: Numerical Simulation.

Fig. 4.
Fig. 4.

Computed temporal evolution inside the PCF for a 0.1 nJ pulse (left) and a 6 nJ pulse (right).

Fig. 5.
Fig. 5.

Evolution of the spectral intensity inside the fibre for different pulse energies. The arrow marks the onset of a dramatic spectral broadening caused by soliton fission.

Fig. 6.
Fig. 6.

(a). Supercontinuum spectra for different pulse energies. The laser spectrum is shown in black as a comparison (b). Energy of the supercontinuum pulses versus energy of the uncompressed oscillator pulses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ κ = β ( ω ) β ( ω 0 ) ( ω ω 0 ) v g γ P 0 = 0

Metrics