Abstract

A new method for monitoring the nonlinearities perturbing the optical frequency sweep in high speed tunable laser sources is presented. The swept-frequency monitoring system comprises a Mach-Zehnder interferometer and simple signal processing steps. It has been implemented in a coherent optical frequency domain reflectometer which allowed to drastically reduce the effects of nonlinear sweep, resulting to a spatial resolution enhancement of 30 times.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
    [CrossRef]
  2. B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, "Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications," in Avionics Fiber-Optics and Photonics, 2006, pp. 38-39 (2006).
  3. C. Ndiaye, T. Hara, and H. Ito, "Profilometry using a frequency-shifted feedback laser," in Proceedings Conference on Lasers and Electro-Optics (CLEO), pp. 1757-1759 (CThM2) (Baltimore, Maryland, 2005).
    [CrossRef]
  4. H. Lim, J. de Boer, B. Park, E. Lee, R. Yelin, and S. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).
    [CrossRef] [PubMed]
  5. J. Zheng, "Analysis of optical frequency-modulated continuous-wave interference," Appl. Opt. 43, 4189-4197 (2004).
    [CrossRef] [PubMed]
  6. U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
    [CrossRef]
  7. J. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Express 13, 666-674 (2005).
    [CrossRef] [PubMed]
  8. T.-J. Ahn, J. Lee, and D. Kim, "Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation," Appl. Opt. 44, 7630-7634 (2005).
    [CrossRef] [PubMed]
  9. K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997).
    [CrossRef]
  10. T.-J. Ahn and D. Kim, "Analysis of nonlinear frequency sweep in high-speed tunable laser sources using selfhomodyne measurement and Hilbert transformation," Appl. Opt. 46, 2394-2400 (2007).
    [CrossRef] [PubMed]
  11. E. Moore and R. McLeod, "Correction of sampling errors due to laser tuning rate fluctuations in sweptwavelength interferometry," Opt. Express 16, 13,139-13,149 (2008).
    [CrossRef]
  12. K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves," J. Lightwave Technol. 15, 1102-1109 (1997).
    [CrossRef]

2008 (1)

E. Moore and R. McLeod, "Correction of sampling errors due to laser tuning rate fluctuations in sweptwavelength interferometry," Opt. Express 16, 13,139-13,149 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (2)

2004 (1)

2003 (1)

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
[CrossRef]

1997 (2)

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves," J. Lightwave Technol. 15, 1102-1109 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997).
[CrossRef]

1993 (1)

U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
[CrossRef]

Ahn, T.-J.

Bastos-Filho, C.

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
[CrossRef]

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
[CrossRef]

Carvalho, M.

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
[CrossRef]

de Boer, J.

Froggatt, M.

Gifford, D.

Glombitza, U.

U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
[CrossRef]

Gomes, A.

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
[CrossRef]

Horiguchi, T.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves," J. Lightwave Technol. 15, 1102-1109 (1997).
[CrossRef]

Kim, D.

Koyamada, Y.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves," J. Lightwave Technol. 15, 1102-1109 (1997).
[CrossRef]

Lee, E.

Lee, J.

Lim, H.

Martins-Filho, J.

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
[CrossRef]

McLeod, R.

E. Moore and R. McLeod, "Correction of sampling errors due to laser tuning rate fluctuations in sweptwavelength interferometry," Opt. Express 16, 13,139-13,149 (2008).
[CrossRef]

Moore, E.

E. Moore and R. McLeod, "Correction of sampling errors due to laser tuning rate fluctuations in sweptwavelength interferometry," Opt. Express 16, 13,139-13,149 (2008).
[CrossRef]

Park, B.

Shimizu, K.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves," J. Lightwave Technol. 15, 1102-1109 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997).
[CrossRef]

Soller, J. B.

Sundheimer, M.

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
[CrossRef]

Tsuji, K.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves," J. Lightwave Technol. 15, 1102-1109 (1997).
[CrossRef]

Wolfe, M.

Yelin, R.

Yun, S.

Zheng, J.

Appl. Opt. (3)

Electron. Lett. (1)

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, "Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer," IEEE Photon. Technol. Lett. 15, 24-26 (2003).
[CrossRef]

J. Lightwave Technol. (2)

U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves," J. Lightwave Technol. 15, 1102-1109 (1997).
[CrossRef]

Opt. Express (3)

Other (2)

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, "Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications," in Avionics Fiber-Optics and Photonics, 2006, pp. 38-39 (2006).

C. Ndiaye, T. Hara, and H. Ito, "Profilometry using a frequency-shifted feedback laser," in Proceedings Conference on Lasers and Electro-Optics (CLEO), pp. 1757-1759 (CThM2) (Baltimore, Maryland, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Auxiliary interferometer layout

Fig. 2.
Fig. 2.

Data processing steps

Fig. 3.
Fig. 3.

OFDR system having auxiliary interferometer and main interferometer. (D: detector, C: coupler, DAQ: data acquisition card)

Fig. 4.
Fig. 4.

(a) Measured time-varying tuning rate and (b) measured nonlinear optical frequency variation of a commercial TLS as a function of time.

Fig. 5.
Fig. 5.

Device Under Test in the OFDR system

Fig. 6.
Fig. 6.

Measured beat spectrum of the main interferometer having two reflections in the DUT (a) without (b) with the nonlinear optical frequency suppression, and having only one reflection in the DUT (c) without (d) with the nonlinear optical frequency suppression

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 exp [ j ϕ ( t ) ]
ϕ ( t ) = 2 π 0 t v ( u ) d u + ϕ 0 ,
I ( t ) = η E ( t ) + E ( t τ ) 2
= 2 η E 0 2 [ 1 + cos ( ϕ ( t ) ϕ ( t τ ) ) ]
u ( t ) = U 0 cos ( ϕ ( t ) ϕ ( t τ ) )
ϕ ( t ) ϕ ( t τ ) = 2 π τ ν ( t ) 2 π i = 2 ( τ ) i i ! d i 1 v ( t ) d t i 1
u ( t ) = U 0 cos ( 2 π τ ν ( t ) ) .
d u N ( t ) d t = 2 π τ d v ( t ) d t sin ( 2 π τ ν ( t ) ) = A ( t ) sin ( 2 π τ ν ( t ) ) .
γ ( t ) = d v ( t ) d t = A ( t ) 2 π τ .
Δ v ( t ) = 0 t γ ( u ) d u .
Δ l = c 2 n g γ Δ f

Metrics