P. S. Davids and S. B. Bollepalli, “Generalized inverse problem for partially coherent projection lithography,” Proc. SPIE 6924, 69240X 2008.

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” Proc. SPIE 7140, 71401A (2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20,126–20141 (2008).

[CrossRef]

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, Optical Microlithography,” Proc. SPIE 5377, 1–20 (2004).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, and M. Hibbs, “Optimum mask and source patterns to print a given shape,” J. Microlithography, Microfabrication, and Microsystems 1, 13–30 (2002).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng. 41, 91–95 (1998).

[CrossRef]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” Proc. SPIE 7140, 71401A (2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20,126–20141 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

X. Ma and G. R. Arce, “PSM design for inverse lithography using illumination with samll partial coherence factor,” in Proc. SPIE (San Jose, CA, 2009).

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” in Proc. SPIE (San Jose, CA, 2007).

P. S. Davids and S. B. Bollepalli, “Generalized inverse problem for partially coherent projection lithography,” Proc. SPIE 6924, 69240X 2008.

[CrossRef]

M. Born and E. Wolfe, Principles of optics (Cambridge University Press, 1999).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, and M. Hibbs, “Optimum mask and source patterns to print a given shape,” J. Microlithography, Microfabrication, and Microsystems 1, 13–30 (2002).

[CrossRef]

M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng. 41, 91–95 (1998).

[CrossRef]

S. A. Campbell, The science and engineering of microelectronic fabrication, 2nd ed. (Publishing House of Electronics Industry, Beijing, 2003).

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

P. S. Davids and S. B. Bollepalli, “Generalized inverse problem for partially coherent projection lithography,” Proc. SPIE 6924, 69240X 2008.

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, and M. Hibbs, “Optimum mask and source patterns to print a given shape,” J. Microlithography, Microfabrication, and Microsystems 1, 13–30 (2002).

[CrossRef]

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, and M. Hibbs, “Optimum mask and source patterns to print a given shape,” J. Microlithography, Microfabrication, and Microsystems 1, 13–30 (2002).

[CrossRef]

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 1828–1836 (1982).

[CrossRef]

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20,126–20141 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” Proc. SPIE 7140, 71401A (2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” in Proc. SPIE (San Jose, CA, 2007).

X. Ma and G. R. Arce, “PSM design for inverse lithography using illumination with samll partial coherence factor,” in Proc. SPIE (San Jose, CA, 2009).

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

P. Yu and D. Z. Pan, “TIP-OPC: a new topological invariant paradigm for pixel based optical proximity correction,” in Proc. ACM/IEEE International Conference on Computer-Aided Design (ICCAD) (2007).

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng. 41, 91–95 (1998).

[CrossRef]

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, and M. Hibbs, “Optimum mask and source patterns to print a given shape,” J. Microlithography, Microfabrication, and Microsystems 1, 13–30 (2002).

[CrossRef]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, Optical Microlithography,” Proc. SPIE 5377, 1–20 (2004).

[CrossRef]

F. Schellenberg, Resolution enhancement techniques in optical lithography (SPIE Press, 2004).

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 1828–1836 (1982).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 1828–1836 (1982).

[CrossRef]

M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng. 41, 91–95 (1998).

[CrossRef]

R. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (John Wiley and Sons, 1995).

M. Born and E. Wolfe, Principles of optics (Cambridge University Press, 1999).

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

A. K. Wong, Resolution enhancement techniques1 (SPIE Press, Bellingham, Washington, 2001).

[CrossRef]

M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng. 41, 91–95 (1998).

[CrossRef]

P. Yu and D. Z. Pan, “TIP-OPC: a new topological invariant paradigm for pixel based optical proximity correction,” in Proc. ACM/IEEE International Conference on Computer-Aided Design (ICCAD) (2007).

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 1828–1836 (1982).

[CrossRef]

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, and M. Hibbs, “Optimum mask and source patterns to print a given shape,” J. Microlithography, Microfabrication, and Microsystems 1, 13–30 (2002).

[CrossRef]

M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng. 41, 91–95 (1998).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20,126–20141 (2008).

[CrossRef]

P. S. Davids and S. B. Bollepalli, “Generalized inverse problem for partially coherent projection lithography,” Proc. SPIE 6924, 69240X 2008.

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” Proc. SPIE 7140, 71401A (2008).

[CrossRef]

T. S. Gau, R. G. Liu, C. K. Chen, C. M. Lai, F. J. Liang, and C. C. Hsia, “The customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, Optical Microlithography,” Proc. SPIE 5377, 1–20 (2004).

[CrossRef]

F. Schellenberg, Resolution enhancement techniques in optical lithography (SPIE Press, 2004).

A. K. Wong, Resolution enhancement techniques1 (SPIE Press, Bellingham, Washington, 2001).

[CrossRef]

S. A. Campbell, The science and engineering of microelectronic fabrication, 2nd ed. (Publishing House of Electronics Industry, Beijing, 2003).

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” in Proc. SPIE (San Jose, CA, 2007).

X. Ma and G. R. Arce, “PSM design for inverse lithography using illumination with samll partial coherence factor,” in Proc. SPIE (San Jose, CA, 2009).

M. Born and E. Wolfe, Principles of optics (Cambridge University Press, 1999).

R. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (John Wiley and Sons, 1995).

P. Yu and D. Z. Pan, “TIP-OPC: a new topological invariant paradigm for pixel based optical proximity correction,” in Proc. ACM/IEEE International Conference on Computer-Aided Design (ICCAD) (2007).