Abstract

We suggest a novel approach in all-optical trapping employing a photophoretic force for manipulation of absorbing particles in open air. We demonstrate experimentally the robust three-dimensional guiding, over the distances of a few millimeters, of agglomerates of carbon nanoparticles with the size spanned from 100 nm to 10μm, as well as their acceleration up to velocities of 1 cm/sec. We achieve stable positioning and guiding of particles as well as simultaneous trapping of a large number of particles in a dual beam optical trap created by two counter-propagating and co-rotating optical vortex beams.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin, "Applications of Laser Radiation Pressure," Science 210, 1081-1088 (1980).
    [CrossRef] [PubMed]
  3. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
    [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  5. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  6. A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation Of Viruses and Bacteria," Science 235, 1517-1520 (1987).
    [CrossRef] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical Trapping and Manipulation Of Single Cells Using Infrared-Laser Beams," Nature 330, 769-771 (1987).
    [CrossRef] [PubMed]
  8. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
    [CrossRef] [PubMed]
  9. M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophot. 2, 021875 (2008).
    [CrossRef]
  10. K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-Molecule Micromanipulation Techniques," Annu. Rev. Mater. Res. 37,33-67 (2007).
    [CrossRef]
  11. S. Chu, "The manipulation of neutral particles," in Nobel Lectures, Physics 1996-2000 (Ed. G. Ekspong, World Sc. Pub. Co., 2002), pp. 122-158.
  12. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
    [CrossRef]
  13. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
    [CrossRef] [PubMed]
  14. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
    [CrossRef] [PubMed]
  15. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.
  16. Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, ed. D. L. Andrews (Elsevier, Academic Press, 2008).
    [PubMed]
  17. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  18. G. C. Spalding, J. Courtial, and R. Di Leonardo, "Holographic Optical Trapping," pp. 139-168 in Ref. [16].
  19. K. Dholakia and P. J. Reece, "Near-field optical micromanipulation," pp. 107-138 in Ref. [16].
  20. A. Ashkin and J. M. Dziedzic, "Optical Levitation by Radiation Pressure," Appl. Phys. Lett. 19, 283-285 (1971).
    [CrossRef]
  21. R. Omori, T. Kobayashi, and A. Suzuki, "Observation of a single-beam gradient-force optical trap for dielectric particles in air," Opt. Lett. 22, 816-818 (1997).
    [CrossRef] [PubMed]
  22. M. D. Summers, J. P. Reid, and D. McGloin, "Optical guiding of aerosol droplets," Opt. Express 14, 6373-6380 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6373.
    [CrossRef] [PubMed]
  23. D. R. Burnham and D. McGloin, "Holographic optical trapping of aerosol droplets," Opt. Express 14, 4175-4181 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-4175.
    [CrossRef] [PubMed]
  24. G. Roosen and C. Imbert, "Optical levitation by means of two horizontal laser beams: a theoretical and experimental study," Phys. Lett. 59A, 6 (1976).
  25. N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
    [CrossRef]
  26. M. Guillon, O. Moine, and B. Stout, "Longitudinal Optical Binding of High Optical Contrast Microdroplets in Air," Phys. Rev. Lett. 96, 143902 (2006).
    [CrossRef] [PubMed]
  27. K. Taji, M. Tachikawa, and K. Nagashima, "Laser trapping of ice crystals," Appl. Phys. Lett. 88, 141111 (2006).
    [CrossRef]
  28. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  29. R. G. Gauthier and A. Frangioudakis, "Optical levitation particle delivery system for a dual beam fiber optic trap," Appl. Opt. 39, 26-33 (2000).
    [CrossRef]
  30. D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutirrez-Vega, and D. Mc-Gloin, "Fiber based optical trapping of aerosols," Opt. Express 16, 14550-14560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550.
    [CrossRef] [PubMed]
  31. D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
    [CrossRef]
  32. K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996).
    [CrossRef] [PubMed]
  33. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, "Trapping and manipulation of lowindex particles in a two-dimensional interferometric optical trap," Opt. Lett. 26863-865 (2001).
    [CrossRef]
  34. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
    [CrossRef] [PubMed]
  35. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998).
    [CrossRef]
  36. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
    [CrossRef]
  37. G. Roosen and C. Imbert, "The TEM.01 mode laser beam - a powerful tool for optical levitation of various types of spheres," Opt. Commun. 26, 432 (1978).
    [CrossRef]
  38. S. Sato, Y. Harada, and Y. Waseda, "Optical trapping of microscopic metal particles," Opt. Lett. 19, 1807 (1994).
    [CrossRef] [PubMed]
  39. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217 (1995).
    [CrossRef]
  40. R. Dimova, H. Polaert, and B. Pouligny, "Absorbing microspheres in water: laser radiation pressure and hydrodynamic forces," in Scattering of Shaped Light Beams and Applications, Eds. G. Gouesbet and G. Grehan (Research signpost, Trivandrum, INDE 2000) pp. 45-65.
  41. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
    [CrossRef]
  42. M. S. Soskin and M. V. Vasnetsov, "Singular Optics," Prog. Opt. 42, 219-276 (Ed. E. Wolf, Elsevier, 2001).
    [CrossRef]
  43. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992).
    [CrossRef] [PubMed]
  44. Optical Angular Momentum, Eds. L. Allen, S. M. Barnett, and M. J. Padgett (Bristol, IOP Publ. 2003) pp. 314
  45. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996).
    [CrossRef] [PubMed]
  46. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998).
    [CrossRef]
  47. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
    [CrossRef] [PubMed]
  48. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
    [CrossRef] [PubMed]
  49. H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995).
    [CrossRef] [PubMed]
  50. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
    [CrossRef]
  51. J. E. Curtis and D. G. Grier, "Structure of Optical Vortices," Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef] [PubMed]
  52. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
    [CrossRef] [PubMed]
  53. K. Sakai and S. Noda, "Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser," Electron. Lett. 43, 107-108 (2007).
    [CrossRef]
  54. F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).
  55. R. W. Lawson, "Photophoresis," Nature 103, 514 (1919).
    [CrossRef]
  56. O. Preining, "Photophoresis," in Aerosol Sciences Ed. C. N. Davies (Academic Press, N. Y. 1966), pp. 111-135.
  57. M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
    [CrossRef]
  58. G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
    [CrossRef]
  59. G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
    [CrossRef]
  60. A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
    [CrossRef]
  61. G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
    [CrossRef]
  62. H. Rohatschek, "Levitation of stratospheric and mesospheric aerosols by gravito-photophoresis," J. Aerosol Sci. 27, 467-475 (1996).
    [CrossRef]
  63. G. Wurm and O. Krauss, "Dust Eruptions by Photophoresis and Solid State Greenhouse Effects," Phys. Rev. Lett. 96, 134301 (2006).
    [CrossRef] [PubMed]
  64. O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
    [CrossRef]
  65. O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
    [CrossRef]
  66. J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
    [CrossRef] [PubMed]
  67. E. G. Rawson and A. D. May, "Propulsion and angular stabilization of dust particles in a laser cavity," Appl. Phys. Lett. 8, 93 (1966).
    [CrossRef]
  68. S. Arnold and M. Lewittes, "Size dependence of the photophoretic force," J. Appl. Phys. 53, 5314 (1982).
    [CrossRef]
  69. A. B. Pluchino, "Photophoretic force on particles for low Knudsen number," Appl. Opt. 22, 103 (1983).
    [CrossRef] [PubMed]
  70. H. Rohatschek, "Photophoretic levitation of carbonaceous aerosols," J. Aerosol Sci. 20, 903-906 (1989).
    [CrossRef]
  71. J. Huisken and E. H. K. Stelzer, "Optical levitation of absorbing particles with a nominally Gaussian laser beam," Opt. Lett. 27, 1223 (2002).
    [CrossRef]
  72. M. H. Rosen and C. Orr, "The photophoretic force," J. Colloid Sci. 19, 50-60 (1964).
    [CrossRef]
  73. M. Pope, S. Arnold, and L. Rozenshtein, "Photophoretic spectroscopy," Chem. Phys. Lett. 62, 589-591 (1979).
    [CrossRef]
  74. S. Arnold and Y. Amani, "Broadband photophoretic spectroscopy," Opt. Lett. 5, 242-244 (1980).
    [CrossRef] [PubMed]
  75. A. B. Pluchino, "Radiometric levitation of spherical carbon aerosol particles using a Nd:YAG laser," Appl. Opt. 22, 1861 (1983).
    [CrossRef] [PubMed]
  76. H. Rohatschek, "Direction, magnitude and causes of photophoretic forces," J. Aerosol Sci. 16, 29-42 (1985).
    [CrossRef]
  77. H. Rohatschek, Acta phys.Austriaca 10, 267 (1956).
  78. C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
    [CrossRef]
  79. I. V. Basisty, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993).
    [CrossRef]
  80. E. G. Gamaly and A. V. Rode, "Nanostructures Created by Lasers," in Encyclopedia of Nanoscience and Nanotechnology7, 783-809 (Am. Sc. Pub., 2004).
  81. B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
    [CrossRef]
  82. A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
    [CrossRef]
  83. A. V. Rode, E. G. Gamaly, and B. Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
    [CrossRef]
  84. A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
    [CrossRef]
  85. CRC Handbook of Chemistry and Physics, Ed. D. R. Lide, 88th ed. (CRC, Taylor & Francis Group, 2008).
  86. W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
    [CrossRef]
  87. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
    [CrossRef] [PubMed]
  88. S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
    [CrossRef]
  89. L. D. Reed, "Low Knudsen number photophoresis," J. Aerosol Sci. 8, 123-131 (1977).
    [CrossRef]
  90. J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
    [CrossRef]
  91. J. Plewa, E. Tanner, D.M. Mueth, and D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1978.
    [CrossRef] [PubMed]
  92. C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
    [CrossRef] [PubMed]

2008

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophot. 2, 021875 (2008).
[CrossRef]

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutirrez-Vega, and D. Mc-Gloin, "Fiber based optical trapping of aerosols," Opt. Express 16, 14550-14560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550.
[CrossRef] [PubMed]

D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
[CrossRef] [PubMed]

C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
[CrossRef] [PubMed]

2007

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

K. Sakai and S. Noda, "Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser," Electron. Lett. 43, 107-108 (2007).
[CrossRef]

K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-Molecule Micromanipulation Techniques," Annu. Rev. Mater. Res. 37,33-67 (2007).
[CrossRef]

2006

M. D. Summers, J. P. Reid, and D. McGloin, "Optical guiding of aerosol droplets," Opt. Express 14, 6373-6380 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6373.
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, "Holographic optical trapping of aerosol droplets," Opt. Express 14, 4175-4181 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-4175.
[CrossRef] [PubMed]

M. Guillon, O. Moine, and B. Stout, "Longitudinal Optical Binding of High Optical Contrast Microdroplets in Air," Phys. Rev. Lett. 96, 143902 (2006).
[CrossRef] [PubMed]

K. Taji, M. Tachikawa, and K. Nagashima, "Laser trapping of ice crystals," Appl. Phys. Lett. 88, 141111 (2006).
[CrossRef]

G. Wurm and O. Krauss, "Dust Eruptions by Photophoresis and Solid State Greenhouse Effects," Phys. Rev. Lett. 96, 134301 (2006).
[CrossRef] [PubMed]

2005

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

2004

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

J. Plewa, E. Tanner, D.M. Mueth, and D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1978.
[CrossRef] [PubMed]

2003

J. E. Curtis and D. G. Grier, "Structure of Optical Vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
[CrossRef]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2002

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

J. Huisken and E. H. K. Stelzer, "Optical levitation of absorbing particles with a nominally Gaussian laser beam," Opt. Lett. 27, 1223 (2002).
[CrossRef]

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

2001

2000

R. G. Gauthier and A. Frangioudakis, "Optical levitation particle delivery system for a dual beam fiber optic trap," Appl. Opt. 39, 26-33 (2000).
[CrossRef]

A. V. Rode, E. G. Gamaly, and B. Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

1999

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

1998

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998).
[CrossRef]

H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

1997

1996

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996).
[CrossRef] [PubMed]

H. Rohatschek, "Levitation of stratospheric and mesospheric aerosols by gravito-photophoresis," J. Aerosol Sci. 27, 467-475 (1996).
[CrossRef]

1995

H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217 (1995).
[CrossRef]

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

1994

1993

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993).
[CrossRef] [PubMed]

I. V. Basisty, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993).
[CrossRef]

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

1992

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992).
[CrossRef] [PubMed]

1989

H. Rohatschek, "Photophoretic levitation of carbonaceous aerosols," J. Aerosol Sci. 20, 903-906 (1989).
[CrossRef]

1987

A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation Of Viruses and Bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical Trapping and Manipulation Of Single Cells Using Infrared-Laser Beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

1986

1985

H. Rohatschek, "Direction, magnitude and causes of photophoretic forces," J. Aerosol Sci. 16, 29-42 (1985).
[CrossRef]

1983

1982

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force," J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

1980

1979

M. Pope, S. Arnold, and L. Rozenshtein, "Photophoretic spectroscopy," Chem. Phys. Lett. 62, 589-591 (1979).
[CrossRef]

1978

G. Roosen and C. Imbert, "The TEM.01 mode laser beam - a powerful tool for optical levitation of various types of spheres," Opt. Commun. 26, 432 (1978).
[CrossRef]

1977

L. D. Reed, "Low Knudsen number photophoresis," J. Aerosol Sci. 8, 123-131 (1977).
[CrossRef]

1976

G. Roosen and C. Imbert, "Optical levitation by means of two horizontal laser beams: a theoretical and experimental study," Phys. Lett. 59A, 6 (1976).

1974

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

1971

A. Ashkin and J. M. Dziedzic, "Optical Levitation by Radiation Pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

1970

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

1967

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

1966

E. G. Rawson and A. D. May, "Propulsion and angular stabilization of dust particles in a laser cavity," Appl. Phys. Lett. 8, 93 (1966).
[CrossRef]

1964

M. H. Rosen and C. Orr, "The photophoretic force," J. Colloid Sci. 19, 50-60 (1964).
[CrossRef]

1962

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

1956

H. Rohatschek, Acta phys.Austriaca 10, 267 (1956).

1919

R. W. Lawson, "Photophoresis," Nature 103, 514 (1919).
[CrossRef]

1917

F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).

1879

J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
[CrossRef]

Ajayan, P. M.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
[CrossRef] [PubMed]

Alexeyev, C. N.

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

Alibert, Y.

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Allemand, J.-F.

K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-Molecule Micromanipulation Techniques," Annu. Rev. Mater. Res. 37,33-67 (2007).
[CrossRef]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992).
[CrossRef] [PubMed]

Amani, Y.

Anand, S.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Arnold, S.

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force," J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

S. Arnold and Y. Amani, "Broadband photophoretic spectroscopy," Opt. Lett. 5, 242-244 (1980).
[CrossRef] [PubMed]

M. Pope, S. Arnold, and L. Rozenshtein, "Photophoretic spectroscopy," Chem. Phys. Lett. 62, 589-591 (1979).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation Of Viruses and Bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical Trapping and Manipulation Of Single Cells Using Infrared-Laser Beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin, "Applications of Laser Radiation Pressure," Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, "Optical Levitation by Radiation Pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Bacsa, W. S.

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Basisty, I. V.

I. V. Basisty, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992).
[CrossRef] [PubMed]

Beresnev, S.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Berry, M. V.

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

Best, G. T.

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
[CrossRef] [PubMed]

Blum, J.

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Broc, J. R.

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

Bryant, P. E.

Bulcock, S.

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

Bur, J. A.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
[CrossRef] [PubMed]

Burnham, D. R.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, "Holographic optical trapping of aerosol droplets," Opt. Express 14, 4175-4181 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-4175.
[CrossRef] [PubMed]

Carruthers, A. E.

D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

Chatelain, A.

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Cheremisin, A. A.

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

Chernyak, V.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Christy, A. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

Chu, S.

Ci, L.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
[CrossRef] [PubMed]

Cizmár, T.

D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

Constable, A.

Curtis, J. E.

J. E. Curtis and D. G. Grier, "Structure of Optical Vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

de Heer, W. A.

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Dewara, N.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophot. 2, 021875 (2008).
[CrossRef]

D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, "Trapping and manipulation of lowindex particles in a two-dimensional interferometric optical trap," Opt. Lett. 26863-865 (2001).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophot. 2, 021875 (2008).
[CrossRef]

Du, K.-M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Duering, M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical Trapping and Manipulation Of Single Cells Using Infrared-Laser Beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation Of Viruses and Bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, "Optical Levitation by Radiation Pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

Ehrenhaft, F.

F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).

Elliman, R. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

Fomyagin, G.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Forro, L.

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Frangioudakis, A.

Freise, M. E.

H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

Furukawa, H.

Gahagan, K. T.

Gamaly, E. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

A. V. Rode, E. G. Gamaly, and B. Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

Gauthier, R. G.

Gerfin, T.

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Gherardi, D. M.

D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

Giesekus, J.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

Grier, D. G.

J. Plewa, E. Tanner, D.M. Mueth, and D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1978.
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Structure of Optical Vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Gu, C.

C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
[CrossRef] [PubMed]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Guillon, M.

M. Guillon, O. Moine, and B. Stout, "Longitudinal Optical Binding of High Optical Contrast Microdroplets in Air," Phys. Rev. Lett. 96, 143902 (2006).
[CrossRef] [PubMed]

Gutirrez-Vega, J. C.

Harada, Y.

Hayata, E.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
[CrossRef]

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217 (1995).
[CrossRef]

H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217 (1995).
[CrossRef]

Hidy, G. M.

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

Horner, J.

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

Horvath, H.

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

Huisken, J.

Humphrey-Baker, R.

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Hyde, S. T.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

Imbert, C.

G. Roosen and C. Imbert, "The TEM.01 mode laser beam - a powerful tool for optical levitation of various types of spheres," Opt. Commun. 26, 432 (1978).
[CrossRef]

G. Roosen and C. Imbert, "Optical levitation by means of two horizontal laser beams: a theoretical and experimental study," Phys. Lett. 59A, 6 (1976).

Kim, J.

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

Kobayashi, T.

Kohira, M. I.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
[CrossRef]

Kolev, V. Z.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Krause, M.

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Krauss, O.

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

G. Wurm and O. Krauss, "Dust Eruptions by Photophoresis and Solid State Greenhouse Effects," Phys. Rev. Lett. 96, 134301 (2006).
[CrossRef] [PubMed]

Lawson, R. W.

R. W. Lawson, "Photophoresis," Nature 103, 514 (1919).
[CrossRef]

Lederer, M. J.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Lewittes, M.

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force," J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

Lin, S. Y.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
[CrossRef] [PubMed]

Lionnet, T.

K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-Molecule Micromanipulation Techniques," Annu. Rev. Mater. Res. 37,33-67 (2007).
[CrossRef]

Lopez-Mariscal, C.

Luther-Davies, B.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

A. V. Rode, E. G. Gamaly, and B. Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

MacDonald, M. P.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

Madsen, N. R.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Magome, N.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
[CrossRef]

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

Maxwell, J. C.

J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
[CrossRef]

May, A. D.

E. G. Rawson and A. D. May, "Propulsion and angular stabilization of dust particles in a laser cavity," Appl. Phys. Lett. 8, 93 (1966).
[CrossRef]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophot. 2, 021875 (2008).
[CrossRef]

McGloin, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, "Holographic optical trapping of aerosol droplets," Opt. Express 14, 4175-4181 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-4175.
[CrossRef] [PubMed]

M. D. Summers, J. P. Reid, and D. McGloin, "Optical guiding of aerosol droplets," Opt. Express 14, 6373-6380 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6373.
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

Mc-Gloin, D.

McKenzie, D. R.

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

Mervis, J.

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

Moine, O.

M. Guillon, O. Moine, and B. Stout, "Longitudinal Optical Binding of High Optical Contrast Microdroplets in Air," Phys. Rev. Lett. 96, 143902 (2006).
[CrossRef] [PubMed]

Mousis, O.

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

Mueth, D.M.

Mukai, S.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
[CrossRef]

Nagashima, K.

K. Taji, M. Tachikawa, and K. Nagashima, "Laser trapping of ice crystals," Appl. Phys. Lett. 88, 141111 (2006).
[CrossRef]

Neuman, K. C.

K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-Molecule Micromanipulation Techniques," Annu. Rev. Mater. Res. 37,33-67 (2007).
[CrossRef]

Nieminen, T. A.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998).
[CrossRef]

Noda, S.

K. Sakai and S. Noda, "Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser," Electron. Lett. 43, 107-108 (2007).
[CrossRef]

Nye, J. F.

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

Omori, R.

Orr, C.

M. H. Rosen and C. Orr, "The photophoretic force," J. Colloid Sci. 19, 50-60 (1964).
[CrossRef]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

Padgett, M. J.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

Paterson, L.

Patterson, T. N. L.

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

Petit, J.-M.

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Plewa, J.

Pluchino, A. B.

Pope, M.

M. Pope, S. Arnold, and L. Rozenshtein, "Photophoretic spectroscopy," Chem. Phys. Lett. 62, 589-591 (1979).
[CrossRef]

Prentiss, M.

Rawson, E. G.

E. G. Rawson and A. D. May, "Propulsion and angular stabilization of dust particles in a laser cavity," Appl. Phys. Lett. 8, 93 (1966).
[CrossRef]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Reed, L. D.

L. D. Reed, "Low Knudsen number photophoresis," J. Aerosol Sci. 8, 123-131 (1977).
[CrossRef]

Reid, J. P.

Rode, A. V.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

A. V. Rode, E. G. Gamaly, and B. Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

Rohatschek, H.

H. Rohatschek, "Levitation of stratospheric and mesospheric aerosols by gravito-photophoresis," J. Aerosol Sci. 27, 467-475 (1996).
[CrossRef]

H. Rohatschek, "Photophoretic levitation of carbonaceous aerosols," J. Aerosol Sci. 20, 903-906 (1989).
[CrossRef]

H. Rohatschek, "Direction, magnitude and causes of photophoretic forces," J. Aerosol Sci. 16, 29-42 (1985).
[CrossRef]

H. Rohatschek, Acta phys.Austriaca 10, 267 (1956).

Roosen, G.

G. Roosen and C. Imbert, "The TEM.01 mode laser beam - a powerful tool for optical levitation of various types of spheres," Opt. Commun. 26, 432 (1978).
[CrossRef]

G. Roosen and C. Imbert, "Optical levitation by means of two horizontal laser beams: a theoretical and experimental study," Phys. Lett. 59A, 6 (1976).

Rosen, M. H.

M. H. Rosen and C. Orr, "The photophoretic force," J. Colloid Sci. 19, 50-60 (1964).
[CrossRef]

Rozenshtein, L.

M. Pope, S. Arnold, and L. Rozenshtein, "Photophoretic spectroscopy," Chem. Phys. Lett. 62, 589-591 (1979).
[CrossRef]

Rubinsztein-Dunlop, H.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217 (1995).
[CrossRef]

Rudd, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutirrez-Vega, and D. Mc-Gloin, "Fiber based optical trapping of aerosols," Opt. Express 16, 14550-14560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550.
[CrossRef] [PubMed]

Sakai, K.

K. Sakai and S. Noda, "Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser," Electron. Lett. 43, 107-108 (2007).
[CrossRef]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

Sato, S.

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

Seballos, L.

C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
[CrossRef] [PubMed]

Shahvisi, A.

Shi, C.

C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
[CrossRef] [PubMed]

Shvedov, V. G.

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

Sibbett, W.

Simpson, N. B.

Soskin, M. S.

I. V. Basisty, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992).
[CrossRef] [PubMed]

Steinbach, J.

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Stelzer, E. H. K.

Stout, B.

M. Guillon, O. Moine, and B. Stout, "Longitudinal Optical Binding of High Optical Contrast Microdroplets in Air," Phys. Rev. Lett. 96, 143902 (2006).
[CrossRef] [PubMed]

Summers, M.

Summers, M. D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

M. D. Summers, J. P. Reid, and D. McGloin, "Optical guiding of aerosol droplets," Opt. Express 14, 6373-6380 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6373.
[CrossRef] [PubMed]

Suzuki, A.

Svoboda, K.

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
[CrossRef] [PubMed]

Swartzlander, G. A.

Tachikawa, M.

K. Taji, M. Tachikawa, and K. Nagashima, "Laser trapping of ice crystals," Appl. Phys. Lett. 88, 141111 (2006).
[CrossRef]

Taji, K.

K. Taji, M. Tachikawa, and K. Nagashima, "Laser trapping of ice crystals," Appl. Phys. Lett. 88, 141111 (2006).
[CrossRef]

Tanner, E.

Ugarte, D.

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Vasnetsov, M. V.

I. V. Basisty, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Vassilyev, Yu. V.

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

Veinger, A. I.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

Waseda, Y.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992).
[CrossRef] [PubMed]

Wright, E. M.

D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

Wurm, G.

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

G. Wurm and O. Krauss, "Dust Eruptions by Photophoresis and Solid State Greenhouse Effects," Phys. Rev. Lett. 96, 134301 (2006).
[CrossRef] [PubMed]

Yamaguchi, I.

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical Trapping and Manipulation Of Single Cells Using Infrared-Laser Beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Yang, Z. P.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
[CrossRef] [PubMed]

Yavorsky, M. A.

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

Yoshikawa, K.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
[CrossRef]

Zarinetchi, F.

Zhang, J. Z.

C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
[CrossRef] [PubMed]

Zhang, Y.

C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
[CrossRef] [PubMed]

Adv. Quantum Chem.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res.

K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-Molecule Micromanipulation Techniques," Annu. Rev. Mater. Res. 37,33-67 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. A

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999).
[CrossRef]

A. V. Rode, E. G. Gamaly, and B. Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

Appl. Phys. Lett.

E. G. Rawson and A. D. May, "Propulsion and angular stabilization of dust particles in a laser cavity," Appl. Phys. Lett. 8, 93 (1966).
[CrossRef]

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

A. Ashkin and J. M. Dziedzic, "Optical Levitation by Radiation Pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

K. Taji, M. Tachikawa, and K. Nagashima, "Laser trapping of ice crystals," Appl. Phys. Lett. 88, 141111 (2006).
[CrossRef]

Appl. Surf. Sci.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002).
[CrossRef]

Astron. Astrophys.

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Atm. Env.

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

Austriaca

H. Rohatschek, Acta phys.Austriaca 10, 267 (1956).

Biophys. J.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett.

M. Pope, S. Arnold, and L. Rozenshtein, "Photophoretic spectroscopy," Chem. Phys. Lett. 62, 589-591 (1979).
[CrossRef]

Chem. Soc. Rev.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Electron. Lett.

K. Sakai and S. Noda, "Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser," Electron. Lett. 43, 107-108 (2007).
[CrossRef]

Eur. Phys. J. E

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Faraday Discuss.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

J. Aerosol Sci.

H. Rohatschek, "Levitation of stratospheric and mesospheric aerosols by gravito-photophoresis," J. Aerosol Sci. 27, 467-475 (1996).
[CrossRef]

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

H. Rohatschek, "Photophoretic levitation of carbonaceous aerosols," J. Aerosol Sci. 20, 903-906 (1989).
[CrossRef]

H. Rohatschek, "Direction, magnitude and causes of photophoretic forces," J. Aerosol Sci. 16, 29-42 (1985).
[CrossRef]

L. D. Reed, "Low Knudsen number photophoresis," J. Aerosol Sci. 8, 123-131 (1977).
[CrossRef]

J. Appl. Phys.

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force," J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

J. Colloid Sci.

M. H. Rosen and C. Orr, "The photophoretic force," J. Colloid Sci. 19, 50-60 (1964).
[CrossRef]

J. Geophys. Res.

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

J. Mod. Opt.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217 (1995).
[CrossRef]

J. Nanophot.

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophot. 2, 021875 (2008).
[CrossRef]

J. Opt. Soc. Am. B

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

J. Phys. Chem. B

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003).
[CrossRef]

Nano Lett.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008).
[CrossRef] [PubMed]

Nanotechnology

C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008).
[CrossRef] [PubMed]

Nature

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical Trapping and Manipulation Of Single Cells Using Infrared-Laser Beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

R. W. Lawson, "Photophoresis," Nature 103, 514 (1919).
[CrossRef]

Opt. Commun.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

G. Roosen and C. Imbert, "The TEM.01 mode laser beam - a powerful tool for optical levitation of various types of spheres," Opt. Commun. 26, 432 (1978).
[CrossRef]

I. V. Basisty, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

R. Omori, T. Kobayashi, and A. Suzuki, "Observation of a single-beam gradient-force optical trap for dielectric particles in air," Opt. Lett. 22, 816-818 (1997).
[CrossRef] [PubMed]

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993).
[CrossRef] [PubMed]

S. Sato, Y. Harada, and Y. Waseda, "Optical trapping of microscopic metal particles," Opt. Lett. 19, 1807 (1994).
[CrossRef] [PubMed]

K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, "Trapping and manipulation of lowindex particles in a two-dimensional interferometric optical trap," Opt. Lett. 26863-865 (2001).
[CrossRef]

K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
[CrossRef] [PubMed]

H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

S. Arnold and Y. Amani, "Broadband photophoretic spectroscopy," Opt. Lett. 5, 242-244 (1980).
[CrossRef] [PubMed]

J. Huisken and E. H. K. Stelzer, "Optical levitation of absorbing particles with a nominally Gaussian laser beam," Opt. Lett. 27, 1223 (2002).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

Phil Trans. R. Soc. London

J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
[CrossRef]

Phys. Fluids A

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Phys. Lett.

G. Roosen and C. Imbert, "Optical levitation by means of two horizontal laser beams: a theoretical and experimental study," Phys. Lett. 59A, 6 (1976).

Phys. Rev. A

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef] [PubMed]

H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Structure of Optical Vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

G. Wurm and O. Krauss, "Dust Eruptions by Photophoresis and Solid State Greenhouse Effects," Phys. Rev. Lett. 96, 134301 (2006).
[CrossRef] [PubMed]

M. Guillon, O. Moine, and B. Stout, "Longitudinal Optical Binding of High Optical Contrast Microdroplets in Air," Phys. Rev. Lett. 96, 143902 (2006).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Phys. Z.

F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).

Planet. Space Sci.

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

Proc. R. Soc. London A

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

Science

A. Ashkin, "Applications of Laser Radiation Pressure," Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation Of Viruses and Bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995).
[CrossRef]

Other

E. G. Gamaly and A. V. Rode, "Nanostructures Created by Lasers," in Encyclopedia of Nanoscience and Nanotechnology7, 783-809 (Am. Sc. Pub., 2004).

CRC Handbook of Chemistry and Physics, Ed. D. R. Lide, 88th ed. (CRC, Taylor & Francis Group, 2008).

G. C. Spalding, J. Courtial, and R. Di Leonardo, "Holographic Optical Trapping," pp. 139-168 in Ref. [16].

K. Dholakia and P. J. Reece, "Near-field optical micromanipulation," pp. 107-138 in Ref. [16].

S. Chu, "The manipulation of neutral particles," in Nobel Lectures, Physics 1996-2000 (Ed. G. Ekspong, World Sc. Pub. Co., 2002), pp. 122-158.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.

Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, ed. D. L. Andrews (Elsevier, Academic Press, 2008).
[PubMed]

M. S. Soskin and M. V. Vasnetsov, "Singular Optics," Prog. Opt. 42, 219-276 (Ed. E. Wolf, Elsevier, 2001).
[CrossRef]

R. Dimova, H. Polaert, and B. Pouligny, "Absorbing microspheres in water: laser radiation pressure and hydrodynamic forces," in Scattering of Shaped Light Beams and Applications, Eds. G. Gouesbet and G. Grehan (Research signpost, Trivandrum, INDE 2000) pp. 45-65.

Optical Angular Momentum, Eds. L. Allen, S. M. Barnett, and M. J. Padgett (Bristol, IOP Publ. 2003) pp. 314

O. Preining, "Photophoresis," in Aerosol Sciences Ed. C. N. Davies (Academic Press, N. Y. 1966), pp. 111-135.

Supplementary Material (6)

» Media 1: MOV (8599 KB)     
» Media 2: MOV (7595 KB)     
» Media 3: MOV (2392 KB)     
» Media 4: MOV (1527 KB)     
» Media 5: MOV (3524 KB)     
» Media 6: MOV (8290 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of an optical trap with two counter-propagating and co-rotating vortex beams shown by surfaces at their tube-like intensity maxima. The focal (gray) planes of the froward (blue) and backward (red) beams are separated by the distance δ, for equal powers of two beams the trapping position is in the middle between two planes. Particle (green sphere) is subject to illumination from both sides, the geometry of the laser power flow (arrows) is shown with the stream-tubes, the varying width of tubes is proportional to the modulus of the Poynting vector.

Fig. 2.
Fig. 2.

Experimental setup. (a) Dual beam vortex trap with movable lens L4 adjusting the separation of focal planes δ. (b) The ring-like transverse intensity distribution of a Laguerre-Gauss vortex beam. Setup elements: DH - diffraction hologram, L - lenses, DP - diaphragm, WP - half-wave plates, BS - polarizing beam-splitters, WL - white light source, M - mirror, C - trapping region, NF - notch filter.

Fig. 3.
Fig. 3.

Photophoretic trap. (a) The side view of the setup with a particle trapped in air. A halo of the scattered light makes particle visible to a naked eye. (b, c) The shade cast by a trapped particle as seen on the optical axis on white-light background in (b) (Media 1) and with superimposed vortex beam in (c)(Media2).

Fig. 4.
Fig. 4.

Electron micrographs of carbon nanoclusters produced by laser ablation and collected from an optical trap. (a) TEM micrograph of single nanoparticles deposited on a holey carbon TEM grid in the laser ablation chamber. The inset shows the nanoparticle size distribution with the maximum at 6 nm; (b) SEM image of nanoparticle aggregates used in the trapping experiments; (c,d) SEM images of carbon nanoclusters collected from the PP trap. The vortex beam radius in these experiments was w = 8.4μm.

Fig. 5.
Fig. 5.

Static guiding of particles in air. The position Z of a trapped particle measured as a function of the polarizer angle θ in (a) and with higher magnification in (b). Vertical bars measure the spot size of the recorded particle images such as those superimposed in (c)(Media 3); corresponding data points are marked in (b) with arrows.

Fig. 6.
Fig. 6.

Dynamic guiding of particles in air (Media 4). Positions of two particles simultaneously bouncing between two extrema points of the trap vs. time are shown in (a); black bars correspond to the on-the-fly tracks overlapping for both particles, such as nine consecutive tracks superimposed in (b). Blue and red bars in (a) measure two tracks of separated particles, such as those shown in the snapshot of (c) at t = 23 s. Arrows in (b) and (c) indicate the directions of propagation.

Fig. 7.
Fig. 7.

Multiple PP trap with tilted beams. (a) Volume plot of the longitudinal cut through the total intensity calculated for two counter-propagating Laguerre-Gaussian beams LG12 tilted in the vertical direction by 0.02 rad. The yellow surfaces cut out the regions of small intensity where particles can be trapped. (b)(Media 5) The side view and (c)(Media 6) the front view of several particles simultaneously trapped with tilted beams.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( θ ) = 1 γ α cos 2 2 θ + β sin 2 2 θ 1 α cos 2 2 θ β sin 2 2 θ , 0.093 ε 15.623 ,
F pp = J 1 9 π μ a 2 a I 0 2 ρ a T ( k f + 2 k a ) ,

Metrics