Abstract

We report on a passively mode-locked ytterbium-doped fiber laser with a repetition rate of 1.8 MHz. The laser was hybridly mode-locked via nonlinear polarization evolution and a semiconductor saturable absorber mirror. It generated chirped 3.8 ps long pulses with a pulse energy of 1.0 nJ which could be dechirped to a pulse duration of 93 fs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, "Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator," Opt. Express 16, 7055-7059 (2008).
    [CrossRef] [PubMed]
  2. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  3. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+silica fiber laser," Opt. Lett. 22, 316-318 (1997).
    [CrossRef] [PubMed]
  4. W. H. Renninger, A. Chong, and F. W. Wise, "Giant-chirp oscillators for short-pulse fiber amplifiers," Opt. Lett. 33, 3025-3027 (2008).
    [CrossRef] [PubMed]
  5. S. Kobtsev, S. Kukarin, and Y. Fedotov, "Ultra-low repetition rate mode-locked fiber laser with high-energy pulses," Opt. Express 16, 21936-21941 (2008).
    [CrossRef] [PubMed]
  6. S. Zhou, D. G. Ouzounov, C. Sinclair, and F. W. Wise, "Generation of 400-fs solitons with 2-MHz repetition rate by a Yb-fiber laser," Lasers and Electro-Optics Society, LEOS 2006, 19th Annual Meeting of the IEEE, 209-210 (2006).
  7. K. H. Fong, K. Kikuchi, and S. Y. Set, "High-energy ultrashort pulse generation from a fundamentally mode-locked fiber laser at 1.7 MHz," Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America), paper OTuF2 (2007).
  8. S. Kane and J. Squier, "Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification," J. Opt. Soc. Am. B 14, 661-665 (1997).
    [CrossRef]
  9. Y. Zaouter, D. N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, and P. Georges, "Third-order spectral phase compensation in parabolic pulse compression," Opt. Express 15, 9372-9377 (2007).
    [CrossRef] [PubMed]
  10. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]

2008 (3)

2007 (2)

1997 (2)

1993 (1)

Cautaerts, V.

Chong, A.

Cormier, E.

Druon, F.

Fedotov, Y.

Georges, P.

Hanna, D. C.

Hanna, M.

Haus, H. A.

Ippen, E. P.

Kane, S.

Kobayashi, Y.

Kobtsev, S.

Kukarin, S.

Nelson, L. E.

Papadopoulos, D. N.

Paschotta, R.

Renninger, W. H.

Richardson, D. J.

Squier, J.

Tamura, K.

Torizuka, K.

Wise, F. W.

Yoshitomi, D.

Zaouter, Y.

Zhou, X.

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (4)

Other (2)

S. Zhou, D. G. Ouzounov, C. Sinclair, and F. W. Wise, "Generation of 400-fs solitons with 2-MHz repetition rate by a Yb-fiber laser," Lasers and Electro-Optics Society, LEOS 2006, 19th Annual Meeting of the IEEE, 209-210 (2006).

K. H. Fong, K. Kikuchi, and S. Y. Set, "High-energy ultrashort pulse generation from a fundamentally mode-locked fiber laser at 1.7 MHz," Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America), paper OTuF2 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. HWP half-wave plate; QWP quarter-wave plate; C grism compressor; SA saturable absorber; PBS polarizing beam splitter; FR Faraday rotator; FC fiber output coupler; SMF single-mode fiber; WDM wavelength division multiplexer; YDF ytterbium-doped fiber. The different output ports are labeled by numbers. The arrow shows the direction of the propagating pulses in the oscillator.

Fig. 2.
Fig. 2.

(a) Pulse train monitored with a fast photodiode. The temporal separation of the pulses was 554 ns according to a repetition rate of 1.8 MHz. (b) Spectrum of the 1.0 nJ pulses with a central wavelength of 1035 nm and a RMS width of 22 nm. Both measurements were taken at port 4.

Fig. 3.
Fig. 3.

(a) Intensity autocorrelation measured at output port 4 with a FWHM of 5.3 ps. (b) Measured intensity autocorrelation of the compressed pulses (black) and calculated Fourier limited autocorrelation assuming zero phase (red). The measured autocorrelation has a FWHM of 128 fs. corresponding to a pulse duration of 93 fs assuming a deconvolution factor of 1.38.

Fig. 4.
Fig. 4.

The figure indicates the spectral evolution inside the laser. The spectra are measured at the different output ports of the oscillator as denoted in Fig. 1. (a) Port 1, (b) port 2 , and (c) port 3.

Metrics