Abstract

Magnetic effects are at the basis of several relevant microwave applications, e.g., imaging, computer memory modules, magneto-inductive waveguides and metamaterials. Commonly designed at low frequencies, purely natural magnetic molecules are not readily available in the visible, due to intrinsic natural limitations of optical materials. Here, using the anomalous wave interaction of electric-plasmonic nanoparticles, we consider a basic geometry that may constitute a lumped isotropic magneto-plasmonic “molecule” at optical frequencies, with applications for cloaking, imaging and optical communications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kerker, "Founding fathers of light scattering and surface-enhanced Raman scattering," Appl. Opt. 30, 4699-4705 (1991).
    [CrossRef] [PubMed]
  2. C. F. Bohren D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  4. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  5. N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
    [CrossRef] [PubMed]
  6. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
    [CrossRef] [PubMed]
  7. Alù, N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  8. R. P. Feynman, QED: The Strange Theory of Light and Matter (Princeton Univ. Press, 1985).
  9. L. Landau, E. M. Lifschitz, Electrodynamics of Continuous Media (Elsevier, 1984).
  10. Alù and N. Engheta, "Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles," Phys. Rev. B 78, 085112 (2008).
    [CrossRef]
  11. R. Merlin, "Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism," Proc. Nat. Acad. Sc. 106, 1693-1698 (2009).
    [CrossRef]
  12. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
    [CrossRef]
  13. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]
  14. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  15. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
    [CrossRef] [PubMed]
  16. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  17. G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
    [CrossRef]
  18. Y. A. Urzhumov, and G. Shvets, "Optical magnetism and negative refraction in plasmonic metamaterials," Solid State Commun. 146, 208-220 (2008).
    [CrossRef]
  19. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, "Plasmonic nanoclusters: a path towards negative-index metafluids," Opt. Express 15, 14129-14145 (2007).
    [CrossRef] [PubMed]
  20. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
    [CrossRef] [PubMed]
  21. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004).
    [CrossRef]
  22. Q. Wu and W. Park, "Negative index materials based on metal nanoclusters," Appl. Phys. Lett. 92, 153114 (2008).
    [CrossRef]
  23. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, "MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis," Phys. Rev. B 76, 195123 (2007).
    [CrossRef]
  24. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
    [CrossRef]
  25. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  26. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
    [CrossRef] [PubMed]
  27. A. Alù and N. Engheta, "Optical nano-transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes," J. Opt. Soc. Am. B 23, 571-583 (2006).
    [CrossRef]
  28. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  29. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express 15, 3333-3341 (2007).
    [CrossRef] [PubMed]
  30. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
    [CrossRef] [PubMed]
  31. W. H. Weber and G. W. Ford, " Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  32. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
    [CrossRef]
  33. A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines," Phys. Rev. B 74, 205436, (2006).
    [CrossRef]
  34. A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: A recipe for broad band negative-refraction optical metamaterials," Phys. Rev. B 75, 024304, (2007).
    [CrossRef]
  35. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
    [CrossRef] [PubMed]
  36. V. Shalaev, private communication.
  37. J. D. Baena, L. Jelinek, and R. Marqués, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," J. Appl. Phys. 76, 245115 (2007).
  38. R. Simovski and S. A. Tretyakov, "Model of isotropic resonant magnetism in the visible range based on core-shell clusters," Phys. Rev. B 79,045111 (2009).
    [CrossRef]
  39. A. Alù and N. Engheta, 2006 OSA Annual Meeting, Frontiers in Optics, Rochester, NY, USA, p. JWD19, October 8-12, 2006.
  40. A. Alù and N. Engheta, USNC/URSI National Radio Science Meeting, San Diego, CA, USA, July 5-12, 2008.
  41. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999).
    [CrossRef]
  42. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002).
    [CrossRef]
  43. O. Sydoruk O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, "Phonon-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett. 87, 072501(2005).
    [CrossRef]
  44. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
    [CrossRef]
  45. S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16, 3560-3565 (2007).
    [CrossRef]

2009

R. Merlin, "Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism," Proc. Nat. Acad. Sc. 106, 1693-1698 (2009).
[CrossRef]

R. Simovski and S. A. Tretyakov, "Model of isotropic resonant magnetism in the visible range based on core-shell clusters," Phys. Rev. B 79,045111 (2009).
[CrossRef]

2008

Alù and N. Engheta, "Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles," Phys. Rev. B 78, 085112 (2008).
[CrossRef]

Y. A. Urzhumov, and G. Shvets, "Optical magnetism and negative refraction in plasmonic metamaterials," Solid State Commun. 146, 208-220 (2008).
[CrossRef]

Q. Wu and W. Park, "Negative index materials based on metal nanoclusters," Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

2007

Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, "MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis," Phys. Rev. B 76, 195123 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, "Plasmonic nanoclusters: a path towards negative-index metafluids," Opt. Express 15, 14129-14145 (2007).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
[CrossRef]

N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express 15, 3333-3341 (2007).
[CrossRef] [PubMed]

J. D. Baena, L. Jelinek, and R. Marqués, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," J. Appl. Phys. 76, 245115 (2007).

A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: A recipe for broad band negative-refraction optical metamaterials," Phys. Rev. B 75, 024304, (2007).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16, 3560-3565 (2007).
[CrossRef]

2006

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines," Phys. Rev. B 74, 205436, (2006).
[CrossRef]

A. Alù and N. Engheta, "Optical nano-transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes," J. Opt. Soc. Am. B 23, 571-583 (2006).
[CrossRef]

2005

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Alù, N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

O. Sydoruk O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, "Phonon-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett. 87, 072501(2005).
[CrossRef]

2004

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

W. H. Weber and G. W. Ford, " Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

2003

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

2002

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999).
[CrossRef]

1991

Alù,

Alù, N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: A recipe for broad band negative-refraction optical metamaterials," Phys. Rev. B 75, 024304, (2007).
[CrossRef]

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines," Phys. Rev. B 74, 205436, (2006).
[CrossRef]

A. Alù and N. Engheta, "Optical nano-transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes," J. Opt. Soc. Am. B 23, 571-583 (2006).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Baena, J. D.

J. D. Baena, L. Jelinek, and R. Marqués, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," J. Appl. Phys. 76, 245115 (2007).

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Brandl, D.

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Cai, W.

Capasso, F.

Chettiar, U. K.

de Silva, V. C.

Dolling, G.

Drachev, V. P.

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: A recipe for broad band negative-refraction optical metamaterials," Phys. Rev. B 75, 024304, (2007).
[CrossRef]

A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines," Phys. Rev. B 74, 205436, (2006).
[CrossRef]

A. Alù and N. Engheta, "Optical nano-transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes," J. Opt. Soc. Am. B 23, 571-583 (2006).
[CrossRef]

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Fan, J. A.

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Ford, G. W.

W. H. Weber and G. W. Ford, " Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999).
[CrossRef]

Jelinek, L.

J. D. Baena, L. Jelinek, and R. Marqués, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," J. Appl. Phys. 76, 245115 (2007).

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002).
[CrossRef]

Kerker, M.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Kildishev, A. V.

Kildishev, A.V.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Koenderink, F.

F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Koschny, Th.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Kussow,

Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, "MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis," Phys. Rev. B 76, 195123 (2007).
[CrossRef]

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Li, T.

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

Liu, H.

S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16, 3560-3565 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Marqués, R.

J. D. Baena, L. Jelinek, and R. Marqués, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," J. Appl. Phys. 76, 245115 (2007).

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Merlin, R.

R. Merlin, "Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism," Proc. Nat. Acad. Sc. 106, 1693-1698 (2009).
[CrossRef]

Nordlander, P.

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Park, W.

Q. Wu and W. Park, "Negative index materials based on metal nanoclusters," Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999).
[CrossRef]

Pertsch, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

Polman, A.

F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Salandrino, A.

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Sarychev, A. K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

Scharf, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express 15, 3333-3341 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

Shamonina, E.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002).
[CrossRef]

Shvets, G.

Y. A. Urzhumov, and G. Shvets, "Optical magnetism and negative refraction in plasmonic metamaterials," Solid State Commun. 146, 208-220 (2008).
[CrossRef]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, "Plasmonic nanoclusters: a path towards negative-index metafluids," Opt. Express 15, 14129-14145 (2007).
[CrossRef] [PubMed]

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

Simovski, R.

R. Simovski and S. A. Tretyakov, "Model of isotropic resonant magnetism in the visible range based on core-shell clusters," Phys. Rev. B 79,045111 (2009).
[CrossRef]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Solymar, L.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Tretyakov, S. A.

R. Simovski and S. A. Tretyakov, "Model of isotropic resonant magnetism in the visible range based on core-shell clusters," Phys. Rev. B 79,045111 (2009).
[CrossRef]

Urzhumov, Y. A.

Y. A. Urzhumov, and G. Shvets, "Optical magnetism and negative refraction in plasmonic metamaterials," Solid State Commun. 146, 208-220 (2008).
[CrossRef]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, "Plasmonic nanoclusters: a path towards negative-index metafluids," Opt. Express 15, 14129-14145 (2007).
[CrossRef] [PubMed]

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Wang, F.M.

Wang, S. M.

Weber, W. H.

W. H. Weber and G. W. Ford, " Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004).
[CrossRef]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Wu, Q.

Q. Wu and W. Park, "Negative index materials based on metal nanoclusters," Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Yuan, H. K.

Yuan, H.-K.

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16, 3560-3565 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

Zhu, S. N.

S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16, 3560-3565 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Q. Wu and W. Park, "Negative index materials based on metal nanoclusters," Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

O. Sydoruk O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, "Phonon-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett. 87, 072501(2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999).
[CrossRef]

J. Appl. Phys.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002).
[CrossRef]

J. D. Baena, L. Jelinek, and R. Marqués, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," J. Appl. Phys. 76, 245115 (2007).

J. Nonlinear Opt. Phys. Mater.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004).
[CrossRef]

Nature Materials

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003).
[CrossRef] [PubMed]

Nature Photon.

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, "MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis," Phys. Rev. B 76, 195123 (2007).
[CrossRef]

W. H. Weber and G. W. Ford, " Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004).
[CrossRef]

F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006).
[CrossRef]

A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines," Phys. Rev. B 74, 205436, (2006).
[CrossRef]

A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: A recipe for broad band negative-refraction optical metamaterials," Phys. Rev. B 75, 024304, (2007).
[CrossRef]

Alù and N. Engheta, "Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles," Phys. Rev. B 78, 085112 (2008).
[CrossRef]

R. Simovski and S. A. Tretyakov, "Model of isotropic resonant magnetism in the visible range based on core-shell clusters," Phys. Rev. B 79,045111 (2009).
[CrossRef]

Phys. Rev. E

Alù, N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett.

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Proc. Nat. Acad. Sc.

R. Merlin, "Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism," Proc. Nat. Acad. Sc. 106, 1693-1698 (2009).
[CrossRef]

Science

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

Solid State Commun.

Y. A. Urzhumov, and G. Shvets, "Optical magnetism and negative refraction in plasmonic metamaterials," Solid State Commun. 146, 208-220 (2008).
[CrossRef]

Other

R. P. Feynman, QED: The Strange Theory of Light and Matter (Princeton Univ. Press, 1985).

L. Landau, E. M. Lifschitz, Electrodynamics of Continuous Media (Elsevier, 1984).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

C. F. Bohren D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

V. Shalaev, private communication.

A. Alù and N. Engheta, 2006 OSA Annual Meeting, Frontiers in Optics, Rochester, NY, USA, p. JWD19, October 8-12, 2006.

A. Alù and N. Engheta, USNC/URSI National Radio Science Meeting, San Diego, CA, USA, July 5-12, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Duality and correspondence between an individual electric-based plasmonic nanoparticle [Fig. 1(a)] as the basic electric optical lumped resonator, and a nanostructure consisting of six nanoparticles, constituting the fundamental magnetic-based plasmonic resonant element, i.e., as a lumped magnetic molecule in the visible. The field plots report the electric field distribution in the E plane at the electric-plasmon (a) and magnetic-plasmon (b) resonant frequency for the two geometries, respectively.

Fig. 2.
Fig. 2.

Comparison between the normalized magnitude of the electric and magnetic polarizabilities for the two basic elements of Fig. 1. The polarizability values are normalized to the corresponding ideal maximum value of polarizability achievable by a lossless particle.

Fig. 3.
Fig. 3.

The comparison between an electric-plasmon wave traveling along a chain of plasmonic particles (as in [30-33]) and a magnetic-plasmon wave traveling along a chain of magnetic molecules, with the geometry of Fig. 1(b).

Metrics