Abstract

We experimentally demonstrate a spectral magnifier using an imaging system with two time-lenses based on four-wave mixing in a Si nanowaveguide. We achieve a magnification factor of 105 with a frequency resolution of 1 GHz. The system offers potential as a tool for single-shot, high resolution spectral measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett. 14,630-632 (1989).
    [CrossRef] [PubMed]
  2. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30,1951-1963 (1994).
    [CrossRef]
  3. J. van Howe and C. Xu, "Ultrafast optical signal processing based upon space-time dualities," J. Lightwave Technol. 24,2649-2662 (2006).
    [CrossRef]
  4. L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
    [CrossRef]
  5. C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging Part I: System configurations," IEEE J. Quantum Electron. 36,430-437 (2000).
    [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett. 33,1047-1049 (2008).
    [CrossRef] [PubMed]
  7. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994).
    [CrossRef]
  8. N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000).
    [CrossRef]
  9. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004).
    [CrossRef]
  10. T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, "Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope," J. Opt. Soc. Am. B 25,A101-A110 (2008).
    [CrossRef]
  11. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature,  456,81-84 (2008).
    [CrossRef] [PubMed]
  12. C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65,2513-2515 (1994).
    [CrossRef]
  13. C. V. Bennett and B. H. Kolner, "Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms," Opt. Lett. 24,783-785 (1999).
    [CrossRef]
  14. A. W. Lohmann and D. Mendlovic, "Temporal filtering with time lenses," Appl. Opt. 31,6212-6219 (1992).
    [CrossRef] [PubMed]
  15. P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
    [CrossRef]
  16. T. Sakano, K. Uchiyama, I. Shake, T. Morioka, and K. Hagimoto, "Large-dispersion-tolerance optical signal transmission system based on temporal imaging," Opt. Lett. 27,583-585 (2002).
    [CrossRef]
  17. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004).
    [CrossRef]
  18. V. Torres-Company, J. Lancis, and P. Andrés, "Spectral imaging system for scaling the power spectrum of optical waveforms," Opt. Lett. 32,2849-2851 (2007).
    [CrossRef] [PubMed]
  19. A. Papoulis, "Dual optical systems," J. Opt. Soc. Am. 58653-654 (1968).
    [CrossRef]
  20. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15,12949-12958 (2007).
    [CrossRef] [PubMed]
  21. F. Vestin, K. Nilsson, and P.-E. Bengtsson, "Validation of a rotational coherent anti-Stokes Raman spectroscopy model for cabon dioxide using high-resolution detection in the temperature range 294-1143K," Appl. Opt. 47,1893-1901 (2008).
    [CrossRef] [PubMed]
  22. K. A. Vereschagin, V. V. Smirnov, O, M. Stel’makh, V. I. Fabelinsky, W. Clauss, D. N. Klimenko, M. Oschwald, and A. K. Vereschagin, "Single-shot high resolution dual-broadband interferometric lineshape spectroscopy," J. Raman Spectrosc. 36,134-138 (2005).
    [CrossRef]
  23. M. F. DeCamp and A. Tokmakoff, "Single-shot two-dimensional spectrometer," Opt. Lett. 31,113-115 (2006).
    [CrossRef] [PubMed]
  24. J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
    [CrossRef]
  25. H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
    [CrossRef]
  26. Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33983-985 (1997).
    [CrossRef]
  27. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999).
    [CrossRef]
  28. S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75,799-802 (2002).
    [CrossRef]
  29. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15,11385-11395 (2007).
    [CrossRef] [PubMed]
  30. J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92,11102 (2008).
    [CrossRef]
  31. V. Torres-Company, J. Lancis, and P. Andrés, "Incoherent frequency-to-time mapping: application to incoherent pulse shaping," J. Opt. Soc. Am. A 24,888-894 (2007).
    [CrossRef]
  32. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14,4357-4362 (2006).
    [CrossRef] [PubMed]
  33. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
    [CrossRef] [PubMed]

2008 (5)

2007 (4)

2006 (4)

2005 (1)

K. A. Vereschagin, V. V. Smirnov, O, M. Stel’makh, V. I. Fabelinsky, W. Clauss, D. N. Klimenko, M. Oschwald, and A. K. Vereschagin, "Single-shot high resolution dual-broadband interferometric lineshape spectroscopy," J. Raman Spectrosc. 36,134-138 (2005).
[CrossRef]

2004 (3)

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004).
[CrossRef]

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
[CrossRef]

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004).
[CrossRef]

2003 (1)

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

2002 (2)

S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75,799-802 (2002).
[CrossRef]

T. Sakano, K. Uchiyama, I. Shake, T. Morioka, and K. Hagimoto, "Large-dispersion-tolerance optical signal transmission system based on temporal imaging," Opt. Lett. 27,583-585 (2002).
[CrossRef]

2000 (3)

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging Part I: System configurations," IEEE J. Quantum Electron. 36,430-437 (2000).
[CrossRef]

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000).
[CrossRef]

1999 (2)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999).
[CrossRef]

C. V. Bennett and B. H. Kolner, "Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms," Opt. Lett. 24,783-785 (1999).
[CrossRef]

1997 (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33983-985 (1997).
[CrossRef]

1994 (3)

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30,1951-1963 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994).
[CrossRef]

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65,2513-2515 (1994).
[CrossRef]

1992 (1)

1989 (1)

1979 (1)

H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
[CrossRef]

1968 (1)

Almeida, P. J.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
[CrossRef]

Andrés, P.

Atkins, S.

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000).
[CrossRef]

Azaña, J.

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004).
[CrossRef]

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994).
[CrossRef]

Barthélémy, A.

T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, "Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope," J. Opt. Soc. Am. B 25,A101-A110 (2008).
[CrossRef]

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
[CrossRef]

Behrendt, R.

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

Bengtsson, P.-E.

Bennett, C. V.

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging Part I: System configurations," IEEE J. Quantum Electron. 36,430-437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, "Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms," Opt. Lett. 24,783-785 (1999).
[CrossRef]

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65,2513-2515 (1994).
[CrossRef]

Berger, N. K.

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004).
[CrossRef]

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000).
[CrossRef]

Bhushan, A. S.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999).
[CrossRef]

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994).
[CrossRef]

Brendenbeck, J.

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33983-985 (1997).
[CrossRef]

Chou, J.

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92,11102 (2008).
[CrossRef]

Coppinger, F.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999).
[CrossRef]

DeCamp, M. F.

Fetterman, H. R.

H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
[CrossRef]

Fischer, B.

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004).
[CrossRef]

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000).
[CrossRef]

Foster, M. A.

Froehly, C.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
[CrossRef]

Futami, F.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004).
[CrossRef]

Gaeta, A. L.

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature,  456,81-84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett. 33,1047-1049 (2008).
[CrossRef] [PubMed]

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994).
[CrossRef]

Hagimoto, K.

Hamm, P.

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

Helbing, J.

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

Hirooka, T.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004).
[CrossRef]

Hult, J.

Ibsen, M.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
[CrossRef]

Jalali, B.

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92,11102 (2008).
[CrossRef]

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999).
[CrossRef]

Kalashyan, M.

Kaminski, C. F.

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994).
[CrossRef]

Kelkar, P. V.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999).
[CrossRef]

Kolner, B. H.

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging Part I: System configurations," IEEE J. Quantum Electron. 36,430-437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, "Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms," Opt. Lett. 24,783-785 (1999).
[CrossRef]

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30,1951-1963 (1994).
[CrossRef]

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65,2513-2515 (1994).
[CrossRef]

B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett. 14,630-632 (1989).
[CrossRef] [PubMed]

Lancis, J.

Levit, B.

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004).
[CrossRef]

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000).
[CrossRef]

Lipson, M.

Lohmann, A. W.

Louradour, F.

T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, "Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope," J. Opt. Soc. Am. B 25,A101-A110 (2008).
[CrossRef]

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
[CrossRef]

Manolatou, C.

Mansuryan, T.

Melngailis, J.

H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
[CrossRef]

Mendlovic, D.

Messager, V.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
[CrossRef]

Morioka, T.

Morodor, L.

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

Mouradian, L.

Mouradian, L. Kh.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
[CrossRef]

Nakazawa, M.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004).
[CrossRef]

Nazarathy, M.

Nilsson, K.

Papoulis, A.

Parker, C. D.

H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
[CrossRef]

Petropoulos, P.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
[CrossRef]

Renner, C.

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

Richardson, D. J.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
[CrossRef]

Sakano, T.

Salem, R.

Sanders, S. T.

S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75,799-802 (2002).
[CrossRef]

Schmidt, B. S.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14,4357-4362 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
[CrossRef] [PubMed]

Scott, R. P.

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65,2513-2515 (1994).
[CrossRef]

Shake, I.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14,4357-4362 (2006).
[CrossRef] [PubMed]

Smirnov, V. V.

K. A. Vereschagin, V. V. Smirnov, O, M. Stel’makh, V. I. Fabelinsky, W. Clauss, D. N. Klimenko, M. Oschwald, and A. K. Vereschagin, "Single-shot high resolution dual-broadband interferometric lineshape spectroscopy," J. Raman Spectrosc. 36,134-138 (2005).
[CrossRef]

Solli, D. R.

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92,11102 (2008).
[CrossRef]

Tannenwald, P. E.

H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
[CrossRef]

Thomsen, B. C.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
[CrossRef]

Tokmakoff, A.

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33983-985 (1997).
[CrossRef]

Torres-Company, V.

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33983-985 (1997).
[CrossRef]

Turner, A. C.

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature,  456,81-84 (2008).
[CrossRef] [PubMed]

Uchiyama, K.

van Howe, J.

Vereschagin, K. A.

K. A. Vereschagin, V. V. Smirnov, O, M. Stel’makh, V. I. Fabelinsky, W. Clauss, D. N. Klimenko, M. Oschwald, and A. K. Vereschagin, "Single-shot high resolution dual-broadband interferometric lineshape spectroscopy," J. Raman Spectrosc. 36,134-138 (2005).
[CrossRef]

Vestin, F.

Wachtveitl, J.

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

Watanabe, S.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004).
[CrossRef]

Watt, R. S.

Williamson, R. C.

H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
[CrossRef]

Xu, C.

Yesayan, G.

Zeytunyan, A.

Appl. Opt. (2)

Appl. Phys. B (1)

S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75,799-802 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92,11102 (2008).
[CrossRef]

H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994).
[CrossRef]

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65,2513-2515 (1994).
[CrossRef]

Electron. Lett. (3)

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000).
[CrossRef]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33983-985 (1997).
[CrossRef]

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999).
[CrossRef]

IEEE J. Quantum Electron. (3)

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30,1951-1963 (1994).
[CrossRef]

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging Part I: System configurations," IEEE J. Quantum Electron. 36,430-437 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004).
[CrossRef]

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004).
[CrossRef]

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003).
[CrossRef]

J. Raman Spectrosc. (1)

K. A. Vereschagin, V. V. Smirnov, O, M. Stel’makh, V. I. Fabelinsky, W. Clauss, D. N. Klimenko, M. Oschwald, and A. K. Vereschagin, "Single-shot high resolution dual-broadband interferometric lineshape spectroscopy," J. Raman Spectrosc. 36,134-138 (2005).
[CrossRef]

Nature (2)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature,  456,81-84 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Single time-lens temporal imaging system. The temporal magnification factor is given by the ratio of the image and object group delay parameters ϕ 2/ϕ 1. (b) Two time-lens spectral imaging system. The spectral magnification ratio is -ϕ A /ϕ B , which corresponds to the ratio of the focal length of the time lenses.

Fig. 2.
Fig. 2.

Experimental setup of the spectral imaging system. The system consists of two FWM-based time-lenses, each with a different focal length.

Fig. 3.
Fig. 3.

Experimental results of the spectral imaging system. The plot shows the input (top) and the magnified output (bottom) for acetylene gas pressures of 600, 100, and 60 Torr (left to right). A frequency magnification factor of 105 is achieved.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 ϕ 1 1 ϕ 2 = 2 ϕ p ,
A 1 ( ω ) = { A ˜ i n * ( τ ) H ˜ A ( τ ) } ,
A 2 ( ω ) = { A ˜ i n * ( τ ) H ˜ A ( τ ) } G A ( ω ) G B ( ω ) ,
A out ( ω ) = { ( [ A ˜ i n * ( τ ) H ˜ A ( τ ) ] 1 [ G A ( ω ) G B ( ω ) ] ) * H ˜ B ( τ ) } .
ϕ p ( B ) 2 ϕ p ( A ) 2 = ϕ A + ϕ B ,
Δ ω Δ t = 1 β 2 L .
Δ ω = τ p ( A ) 2 β 2 ( A ) L A .
ΔΩ = 2 β p ( B ) L B Ω p ( B ) β 2 ( A ) L A .

Metrics