Abstract

We report on the generation of 281.2 nJ mode locked pulses directly from an erbium-doped fiber laser mode-locked with the nonlinear polarization rotation technique. We show that apart from the conventional dissipative soliton operation, an all-normal-dispersion fiber laser can also emit square-profile dissipative solitons whose energy could increase to a very large value without pulse breaking.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Zhao, D. Y. Tang and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
    [CrossRef] [PubMed]
  2. A. Chong, J. Buckley, W. Renninger and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
    [CrossRef] [PubMed]
  3. A. Chong, J. Buckley, W. Renninger and F. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  4. N. Akhmediev and A. Ankiewicz, "Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations," in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).
    [CrossRef]
  5. N. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation," Phys. Rev. E 53, 1190-1201 (1996).
    [CrossRef]
  6. B. A. Malomed and A. A. Nepomnyashchy, "Kinks and solitons in the generalized Ginzburg-Landau equation," Phys. Rev. A 42, 6009-6014 (1990).
    [CrossRef] [PubMed]
  7. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
    [CrossRef]
  8. N. N. Akhmediev, J. M. Soto-Crespo and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
    [CrossRef]
  9. W. Chang, A. Ankiewicz, J. M. Soto-Crespo and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
    [CrossRef]
  10. H. Zhang, D. Y. Tang, X. Wu and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called "Dark soliton fiber laser."
  11. L. M. Zhao, D. Y. Tang, T. H. Cheng and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun. 272, 431-434 (2007).
    [CrossRef]
  12. P. Kolodner, D. Bensimon and C. M. Surko, "Traveling-wave convection in an annulus," Phys. Rev. Lett. 60, 1723-1726 (1988).
    [CrossRef] [PubMed]
  13. V. J. Matsas, T. P. newson and M. N. Zervas, "Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching," Opt. Commun. 92, 61-66 (1992).
    [CrossRef]

2008 (2)

N. N. Akhmediev, J. M. Soto-Crespo and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

2007 (2)

L. M. Zhao, D. Y. Tang, T. H. Cheng and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun. 272, 431-434 (2007).
[CrossRef]

A. Chong, J. Buckley, W. Renninger and F. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
[CrossRef] [PubMed]

2006 (2)

1997 (1)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

1996 (1)

N. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation," Phys. Rev. E 53, 1190-1201 (1996).
[CrossRef]

1992 (1)

V. J. Matsas, T. P. newson and M. N. Zervas, "Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

1990 (1)

B. A. Malomed and A. A. Nepomnyashchy, "Kinks and solitons in the generalized Ginzburg-Landau equation," Phys. Rev. A 42, 6009-6014 (1990).
[CrossRef] [PubMed]

1988 (1)

P. Kolodner, D. Bensimon and C. M. Surko, "Traveling-wave convection in an annulus," Phys. Rev. Lett. 60, 1723-1726 (1988).
[CrossRef] [PubMed]

Afanasjev, V. V.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation," Phys. Rev. E 53, 1190-1201 (1996).
[CrossRef]

Akhmediev, N.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev, J. M. Soto-Crespo and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation," Phys. Rev. E 53, 1190-1201 (1996).
[CrossRef]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Bensimon, D.

P. Kolodner, D. Bensimon and C. M. Surko, "Traveling-wave convection in an annulus," Phys. Rev. Lett. 60, 1723-1726 (1988).
[CrossRef] [PubMed]

Buckley, J.

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun. 272, 431-434 (2007).
[CrossRef]

Chong, A.

Grelu, Ph.

N. N. Akhmediev, J. M. Soto-Crespo and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Kolodner, P.

P. Kolodner, D. Bensimon and C. M. Surko, "Traveling-wave convection in an annulus," Phys. Rev. Lett. 60, 1723-1726 (1988).
[CrossRef] [PubMed]

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun. 272, 431-434 (2007).
[CrossRef]

Malomed, B. A.

B. A. Malomed and A. A. Nepomnyashchy, "Kinks and solitons in the generalized Ginzburg-Landau equation," Phys. Rev. A 42, 6009-6014 (1990).
[CrossRef] [PubMed]

Matsas, V. J.

V. J. Matsas, T. P. newson and M. N. Zervas, "Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

Nepomnyashchy, A. A.

B. A. Malomed and A. A. Nepomnyashchy, "Kinks and solitons in the generalized Ginzburg-Landau equation," Phys. Rev. A 42, 6009-6014 (1990).
[CrossRef] [PubMed]

Renninger, W.

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

N. N. Akhmediev, J. M. Soto-Crespo and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation," Phys. Rev. E 53, 1190-1201 (1996).
[CrossRef]

Surko, C. M.

P. Kolodner, D. Bensimon and C. M. Surko, "Traveling-wave convection in an annulus," Phys. Rev. Lett. 60, 1723-1726 (1988).
[CrossRef] [PubMed]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun. 272, 431-434 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
[CrossRef] [PubMed]

Wabnitz, S.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

Wise, F.

Wu, J.

Zhao, L. M.

L. M. Zhao, D. Y. Tang, T. H. Cheng and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun. 272, 431-434 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
[CrossRef] [PubMed]

Opt. Commun. (2)

L. M. Zhao, D. Y. Tang, T. H. Cheng and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun. 272, 431-434 (2007).
[CrossRef]

V. J. Matsas, T. P. newson and M. N. Zervas, "Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (1)

N. N. Akhmediev, J. M. Soto-Crespo and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Phys. Rev. A (2)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

B. A. Malomed and A. A. Nepomnyashchy, "Kinks and solitons in the generalized Ginzburg-Landau equation," Phys. Rev. A 42, 6009-6014 (1990).
[CrossRef] [PubMed]

Phys. Rev. E (2)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation," Phys. Rev. E 53, 1190-1201 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

P. Kolodner, D. Bensimon and C. M. Surko, "Traveling-wave convection in an annulus," Phys. Rev. Lett. 60, 1723-1726 (1988).
[CrossRef] [PubMed]

Other (2)

H. Zhang, D. Y. Tang, X. Wu and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called "Dark soliton fiber laser."

N. Akhmediev and A. Ankiewicz, "Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations," in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. WDM, wavelength-division-multiplexing coupler; EDF, erbium-doped fiber; PDISO, polarization-dependent isolator; PC, polarization controllers.

Fig. 2.
Fig. 2.

Square pulse emission of the laser. (a) Zoom-in high speed oscilloscope traces under different pump power; inset: oscilloscope trace of a square pulse train. (b) Optical spectra of the square pulses under different pump power.

Fig. 3.
Fig. 3.

The experimentally measured average output power and pulse width versus the pump power injected into the cavity.

Metrics