Abstract

We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide controlled through thermo-optic effect. The effective footprint of the device is about 1000×500 μm2. The minimum insertion loss is about 10.7 dB and the tuning bandwidth about 17 nm. The average tuning power efficiency is about 6.187 mW/nm and the tuning speed about 24.4 kHz. The thermo-optic polarization-rotation effect is firstly reported in this paper.

© 2009 Optical Society of America

Full Article  |  PDF Article

Corrections

Minming Geng, Lianxi Jia, Lei Zhang, Lin Yang, Ping Chen, Tong Wang, and Yuliang Liu, "Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide: erratum," Opt. Express 17, 18209-18210 (2009)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-20-18209

References

  • View by:
  • |
  • |
  • |

  1. M. P. Earnshaw, A. Griffin, C. Bolle, and J. B. D. Soole, "Reconfigurable optical add-drop multiplexer (ROADM) with integrated sub-band optical cross-connect", in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OTuD2, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OTuD2.
  2. W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
    [CrossRef]
  3. M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
    [CrossRef]
  4. M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, "Reconfigurable optical add-drop multiplexer (ROADM) with full add and drop path cross connect", in Conference on Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper IThA2, http://www.opticsinfobase.org/abstract.cfm?URI=IPR-2004-IThA2.
  5. T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, "Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC", in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OWC6, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWC6.
  6. F. Xiao, B. Juswardy, and K. Alameh, "Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors", Opt. Express 16, 11703-11708 (2008).
    [CrossRef] [PubMed]
  7. A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001).
    [CrossRef]
  8. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
    [CrossRef]
  9. H. Yamada, T. Chu, S. Nakamura, Y. Urino, S. Ishida, and Y. Arakawa, "Silicon photonic-wire waveguide devices", Proc. SPIE 6477, 647709-1-9 (2007).
  10. T. Barwicz, M. A. Popovic, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, "Reconfigurable silicon photonic circuits for telecommunication applications", Proc. SPIE 6872, 68720Z-1-12 (2008).
  11. C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000).
    [CrossRef]
  12. M. Muha, B. Chiang, and R. Schleicher, "MEMS based channelized ROADM platform", in National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2008), paper JthA24, http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2008-JThA24.
  13. N. A. Riza and S. Yuan, "Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches", J. Lightwave Technol. 17, 1575-1584 (1999).
    [CrossRef]
  14. P. Evans, G. Baxter, H. Zhou, D. Abakoumov, S. Poole, and S. Frisken, "LCOS-based WSS with true integrated channel monitor for signal quality monitoring applications in ROADMS", in National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OWC3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWC3.
  15. W. Bogaerts, P. Dumon, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, D. van Thourhout, D. Taillaert, B. Luyssaert, and R. Baets, "Silicon-on-insulator nanophotonics", Proc. SPIE 5956, 59560R-1-15, (2005)
  16. R. Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
    [CrossRef]
  17. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  18. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).
  19. W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
    [CrossRef]
  20. J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
    [CrossRef]
  21. Y. Vlasov, "Silicon photonics for next generation computing systems", in Proceedings of IEEE Conference on European Conference of Optical Communications (Brussels, Belgium, 2008), http://www.ecoc2008.org/documents/SC2_Vlasov.pdf.
  22. S. F. Preble, Q. F. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip", Opt. Lett. 30, 2891-2893 (2005).
    [CrossRef] [PubMed]
  23. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  24. A. Cabas, M. Di Muri, S. Doneda, P. Galli, S. Ghidini, F. Giacometti, S. Lorenzotti, G. Mutinati A. Nottola, M. Romagnoli, S. Sardo, L. Socci, T. Tomasi, G. Zuliani, M. Gentili G. Grasso, and M. Romagnoli, "Silicon on insulator based integrated tunable add and drop filter for metro DWDM networks", in Proceedings of IEEE Conference on International Conference on Transparent Optical Networks (Rome, Italy, 2007), pp. 236-239.
    [CrossRef]
  25. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion", Opt. Express 15, 14765-14771 (2007).
    [CrossRef] [PubMed]
  26. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications", Opt. Express 15, 7489-7498 (2007).
    [CrossRef] [PubMed]
  27. J. Lee, S. Park, and G. Kim, "Multichannel silicon WDM ring filters fabricated with DUV lithography", Opt. Commun. 281, 4302-4306 (2008).
    [CrossRef]
  28. Y. Vlasov, W. M. J. Green, and F. N. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks", Nature Photonics 2, 242-246 (2008).
    [CrossRef]
  29. F. N. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on chip optical interconnects", Opt. Express,  15, 11934-11941 (2007).
    [CrossRef] [PubMed]
  30. F. N. Xia, M. O’Boyle, L. Sekaric, and Y. A. Vlasov, "Compact wavelength multiplexers/demultiplexers using photonic wires on silicon-on-insulator (SOI) substrate", in Proceedings of IEEE Conference on International Conference on Indium Phosphide and Related Materials Conference Proceedings (Princeton Univ, Princeton, New Jersey, 2006), pp. 429-430.
    [PubMed]
  31. M. Lipson, "Switching and modulating light on silicon", Proc. SPIE 5730, 102-113 (2005).
    [CrossRef]
  32. S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008).
    [CrossRef]
  33. H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
    [CrossRef]
  34. F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultra-compact optical buffers on a silicon chip", Nature Photonics 1, 65-71 (2006).
    [CrossRef]
  35. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  36. A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems", J. Lightwave Technol. 20, 296-303 (2002).
    [CrossRef]
  37. S. J. Emelett and R. A. Soref, "Synthesis of dual-microring-resonator crossconnect filters", Opt. Express 13,4439-4456 (2005).
    [CrossRef] [PubMed]
  38. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators", Opt. Lett. 25, 344-346 (2000).
    [CrossRef]
  39. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997).
    [CrossRef]
  40. M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
    [CrossRef]
  41. O. Schwelb, "Crosstalk and bandwidth of lossy microring add/drop multiplexers", Opt. Commun. 265,175-179 (2006).
    [CrossRef]
  42. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides", Opt. Express 12,90-103 (2004).
    [CrossRef] [PubMed]
  43. H. Jia and K. Yasumot, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section", IEEE Antennas and Wireless Propagation Letters 3, 41-44 (2004).
    [CrossRef]
  44. W. Chen, W. L. Chen, and Y. J. Chen, "A characteristic matrix approach for analyzing resonant ring lattice devices", IEEE Photon. Technol. Lett. 16, 458-460 (2004).
    [CrossRef]
  45. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  46. L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).
  47. F.  Gan, T.  Barwicz, M. A.  Popovic, M. S.  Dahlem, C. W.  Holzwarth, P. T.  Rakich, H. I.  Smith, E. P.  Ippen, and F. X.  Kärtner, "Maximizing the thermo-optic tuning range of silicon photonic structures", in Proceeding of IEEE Conference on Photonics in Switching (San Francisco, CA, 2007), pp. 67-68.
  48. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004).
    [CrossRef]
  49. W. Bogaerts, P. Dumon, D. van Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides", Opt. Lett. 32, 2801-2803 (2007).
    [CrossRef] [PubMed]
  50. F. Xu and A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings", Opt. Express 16, 8649-8657 (2008).
    [CrossRef] [PubMed]
  51. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
    [CrossRef]
  52. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]
  53. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction", Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  54. T. Tsuchizawa, T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi, and H. Morita, "Fabrication and evaluation of submicron-square Si wire waveguides with spot-size converters", in Proceedings of IEEE Annual Meeting of Lasers and Electro-Optics Society (Glasgow, Scotland, 2002), pp. 287-288.
    [CrossRef]

2008 (7)

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008).
[CrossRef]

J. Lee, S. Park, and G. Kim, "Multichannel silicon WDM ring filters fabricated with DUV lithography", Opt. Commun. 281, 4302-4306 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. N. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks", Nature Photonics 2, 242-246 (2008).
[CrossRef]

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

F. Xu and A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings", Opt. Express 16, 8649-8657 (2008).
[CrossRef] [PubMed]

F. Xiao, B. Juswardy, and K. Alameh, "Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors", Opt. Express 16, 11703-11708 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (3)

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultra-compact optical buffers on a silicon chip", Nature Photonics 1, 65-71 (2006).
[CrossRef]

R. Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

O. Schwelb, "Crosstalk and bandwidth of lossy microring add/drop multiplexers", Opt. Commun. 265,175-179 (2006).
[CrossRef]

2005 (7)

S. J. Emelett and R. A. Soref, "Synthesis of dual-microring-resonator crossconnect filters", Opt. Express 13,4439-4456 (2005).
[CrossRef] [PubMed]

S. F. Preble, Q. F. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip", Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

M. Lipson, "Switching and modulating light on silicon", Proc. SPIE 5730, 102-113 (2005).
[CrossRef]

2004 (5)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides", Opt. Express 12,90-103 (2004).
[CrossRef] [PubMed]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

H. Jia and K. Yasumot, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section", IEEE Antennas and Wireless Propagation Letters 3, 41-44 (2004).
[CrossRef]

W. Chen, W. L. Chen, and Y. J. Chen, "A characteristic matrix approach for analyzing resonant ring lattice devices", IEEE Photon. Technol. Lett. 16, 458-460 (2004).
[CrossRef]

2003 (3)

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

2002 (2)

A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems", J. Lightwave Technol. 20, 296-303 (2002).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

2001 (2)

A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001).
[CrossRef]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction", Opt. Lett. 26, 1888-1890 (2001).
[CrossRef]

2000 (2)

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators", Opt. Lett. 25, 344-346 (2000).
[CrossRef]

C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000).
[CrossRef]

1999 (1)

1997 (2)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Absil, P. P.

Alameh, K.

Andry, P. S.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Baets, R.

W. Bogaerts, P. Dumon, D. van Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides", Opt. Lett. 32, 2801-2803 (2007).
[CrossRef] [PubMed]

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Baker, N.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Beckx, S.

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. Dumon, D. van Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides", Opt. Lett. 32, 2801-2803 (2007).
[CrossRef] [PubMed]

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Cappuzzo, M.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Cerrina, F.

Chang, S. J.

S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008).
[CrossRef]

Chen, E.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Chen, W.

W. Chen, W. L. Chen, and Y. J. Chen, "A characteristic matrix approach for analyzing resonant ring lattice devices", IEEE Photon. Technol. Lett. 16, 458-460 (2004).
[CrossRef]

Chen, W. L.

W. Chen, W. L. Chen, and Y. J. Chen, "A characteristic matrix approach for analyzing resonant ring lattice devices", IEEE Photon. Technol. Lett. 16, 458-460 (2004).
[CrossRef]

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

Chen, Y. J.

S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008).
[CrossRef]

W. Chen, W. L. Chen, and Y. J. Chen, "A characteristic matrix approach for analyzing resonant ring lattice devices", IEEE Photon. Technol. Lett. 16, 458-460 (2004).
[CrossRef]

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

Cheng, Y.

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).

Chu, S. T.

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators", Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Dang, B.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Driessen, A.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

Dumon, P.

W. Bogaerts, P. Dumon, D. van Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides", Opt. Lett. 32, 2801-2803 (2007).
[CrossRef] [PubMed]

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Earnshaw, M. P.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Emelett, S. J.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

Geng, M. M.

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

Geuzebroek, D. H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

Goldstein, E.

C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000).
[CrossRef]

Gomez, L.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. N. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks", Nature Photonics 2, 242-246 (2008).
[CrossRef]

Grek, B.

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

Griffin, A.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Ho, S. T.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Horton, R. R.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Hryniewicz, J. V.

Huang, Y.

Interrante, M. J.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

Jia, H.

H. Jia and K. Yasumot, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section", IEEE Antennas and Wireless Propagation Letters 3, 41-44 (2004).
[CrossRef]

Jia, L. X.

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

Juswardy, B.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Kelderman, H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

Khan, M. H.

Kim, G.

J. Lee, S. Park, and G. Kim, "Multichannel silicon WDM ring filters fabricated with DUV lithography", Opt. Commun. 281, 4302-4306 (2008).
[CrossRef]

Kimerling, L. C.

Klein, E. J.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

Knickerbocker, J. U.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Laskowski, E.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Lee, J.

J. Lee, S. Park, and G. Kim, "Multichannel silicon WDM ring filters fabricated with DUV lithography", Opt. Commun. 281, 4302-4306 (2008).
[CrossRef]

Lee, K. K.

Li, D.

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

Li, F.

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

Lim, D. R.

Lin, L.

C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000).
[CrossRef]

Lipson, M.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

S. F. Preble, Q. F. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip", Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

M. Lipson, "Switching and modulating light on silicon", Proc. SPIE 5730, 102-113 (2005).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators", Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Liu, Y. L.

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).

Liu, Y.L.

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

Luyssaert, B.

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Martinelli, M.

Martinez, J.

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

Melloni, A.

Mookherjea, S.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Ng, H.

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

Ni, C. Y.

S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008).
[CrossRef]

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Paloczi, G. T.

Panepucci, R. R.

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

Park, S.

J. Lee, S. Park, and G. Kim, "Multichannel silicon WDM ring filters fabricated with DUV lithography", Opt. Commun. 281, 4302-4306 (2008).
[CrossRef]

Patel, C. S.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Pathak, K.

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

Polastre, R. J.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Poon, A. W.

Poon, J. K. S.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

Pu, C.

C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000).
[CrossRef]

Qi, M. H.

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Riza, N. A.

Rooks, M.

Sakuma, K.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Scheuer, J.

Schmidt, B.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

Schmidt, K.

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

Schwelb, O.

O. Schwelb, "Crosstalk and bandwidth of lossy microring add/drop multiplexers", Opt. Commun. 265,175-179 (2006).
[CrossRef]

Sekaric, L.

Sengo, G.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

Shen, H.

Shin, J.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Sirdeshmukh, R.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Song, K.

A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001).
[CrossRef]

Soole, J.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Soref, R.

R. Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

Soref, R. A.

S. J. Emelett and R. A. Soref, "Synthesis of dual-microring-resonator crossconnect filters", Opt. Express 13,4439-4456 (2005).
[CrossRef] [PubMed]

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Sprogis, E. J.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Sri-Jayantha, S. M.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Stephens, A. M.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Sun, J.

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

Taflove, A.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Taillaert, D.

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

Tkach, R.

C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000).
[CrossRef]

Topol, A. W.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Tran, A. V.

A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001).
[CrossRef]

Tsang, C. K.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Tucker, R. S.

A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001).
[CrossRef]

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

van Campenhout, J.

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

van Thourhout, D.

W. Bogaerts, P. Dumon, D. van Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides", Opt. Lett. 32, 2801-2803 (2007).
[CrossRef] [PubMed]

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. N. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks", Nature Photonics 2, 242-246 (2008).
[CrossRef]

F. N. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on chip optical interconnects", Opt. Express,  15, 11934-11941 (2007).
[CrossRef] [PubMed]

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultra-compact optical buffers on a silicon chip", Nature Photonics 1, 65-71 (2006).
[CrossRef]

Wang, M. R.

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

Wang, Q. M.

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).

Wang, W.

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).

Wang, X.

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

Wang, Z. P.

S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Webb, B. C.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Wiaux, V.

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Wong-Foy, A.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

Wouters, J.

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Wright, S. L.

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

Xia, F. N.

Y. Vlasov, W. M. J. Green, and F. N. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks", Nature Photonics 2, 242-246 (2008).
[CrossRef]

F. N. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on chip optical interconnects", Opt. Express,  15, 11934-11941 (2007).
[CrossRef] [PubMed]

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultra-compact optical buffers on a silicon chip", Nature Photonics 1, 65-71 (2006).
[CrossRef]

Xiao, F.

Xiao, S. J.

Xu, F.

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

S. F. Preble, Q. F. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip", Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Yang, L.

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).

Yariv, A.

Yasumot, K.

H. Jia and K. Yasumot, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section", IEEE Antennas and Wireless Propagation Letters 3, 41-44 (2004).
[CrossRef]

Yuan, S.

Zhang, L.

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

Zhong, W. D.

A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001).
[CrossRef]

Zhu, Z. H.

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

Chin. Phys. Lett. (1)

M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008).
[CrossRef]

E (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

IBM J. Res. and Dev. (1)

J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008).
[CrossRef]

IEEE Antennas and Wireless Propagation Letters (1)

H. Jia and K. Yasumot, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section", IEEE Antennas and Wireless Propagation Letters 3, 41-44 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

R. Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005).
[CrossRef]

C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000).
[CrossRef]

S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008).
[CrossRef]

H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007).
[CrossRef]

W. Chen, W. L. Chen, and Y. J. Chen, "A characteristic matrix approach for analyzing resonant ring lattice devices", IEEE Photon. Technol. Lett. 16, 458-460 (2004).
[CrossRef]

IEEE Photon.Technol. Lett. (2)

A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001).
[CrossRef]

W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003).
[CrossRef]

J. Lightwave Technol. (4)

N. A. Riza and S. Yuan, "Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches", J. Lightwave Technol. 17, 1575-1584 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems", J. Lightwave Technol. 20, 296-303 (2002).
[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Nature (1)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Nature Photonics (3)

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultra-compact optical buffers on a silicon chip", Nature Photonics 1, 65-71 (2006).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. N. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks", Nature Photonics 2, 242-246 (2008).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007).
[CrossRef]

Opt. Commun. (2)

O. Schwelb, "Crosstalk and bandwidth of lossy microring add/drop multiplexers", Opt. Commun. 265,175-179 (2006).
[CrossRef]

J. Lee, S. Park, and G. Kim, "Multichannel silicon WDM ring filters fabricated with DUV lithography", Opt. Commun. 281, 4302-4306 (2008).
[CrossRef]

Opt. Eng. Lett. (1)

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).

Opt. Express (7)

Opt. Lett. (4)

Proc. SPIE (2)

M. Lipson, "Switching and modulating light on silicon", Proc. SPIE 5730, 102-113 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003).
[CrossRef]

Other (13)

P. Evans, G. Baxter, H. Zhou, D. Abakoumov, S. Poole, and S. Frisken, "LCOS-based WSS with true integrated channel monitor for signal quality monitoring applications in ROADMS", in National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OWC3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWC3.

W. Bogaerts, P. Dumon, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, D. van Thourhout, D. Taillaert, B. Luyssaert, and R. Baets, "Silicon-on-insulator nanophotonics", Proc. SPIE 5956, 59560R-1-15, (2005)

M. Muha, B. Chiang, and R. Schleicher, "MEMS based channelized ROADM platform", in National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2008), paper JthA24, http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2008-JThA24.

H. Yamada, T. Chu, S. Nakamura, Y. Urino, S. Ishida, and Y. Arakawa, "Silicon photonic-wire waveguide devices", Proc. SPIE 6477, 647709-1-9 (2007).

T. Barwicz, M. A. Popovic, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, "Reconfigurable silicon photonic circuits for telecommunication applications", Proc. SPIE 6872, 68720Z-1-12 (2008).

M. P. Earnshaw, A. Griffin, C. Bolle, and J. B. D. Soole, "Reconfigurable optical add-drop multiplexer (ROADM) with integrated sub-band optical cross-connect", in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OTuD2, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OTuD2.

M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, "Reconfigurable optical add-drop multiplexer (ROADM) with full add and drop path cross connect", in Conference on Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper IThA2, http://www.opticsinfobase.org/abstract.cfm?URI=IPR-2004-IThA2.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, "Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC", in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OWC6, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWC6.

A. Cabas, M. Di Muri, S. Doneda, P. Galli, S. Ghidini, F. Giacometti, S. Lorenzotti, G. Mutinati A. Nottola, M. Romagnoli, S. Sardo, L. Socci, T. Tomasi, G. Zuliani, M. Gentili G. Grasso, and M. Romagnoli, "Silicon on insulator based integrated tunable add and drop filter for metro DWDM networks", in Proceedings of IEEE Conference on International Conference on Transparent Optical Networks (Rome, Italy, 2007), pp. 236-239.
[CrossRef]

Y. Vlasov, "Silicon photonics for next generation computing systems", in Proceedings of IEEE Conference on European Conference of Optical Communications (Brussels, Belgium, 2008), http://www.ecoc2008.org/documents/SC2_Vlasov.pdf.

F. N. Xia, M. O’Boyle, L. Sekaric, and Y. A. Vlasov, "Compact wavelength multiplexers/demultiplexers using photonic wires on silicon-on-insulator (SOI) substrate", in Proceedings of IEEE Conference on International Conference on Indium Phosphide and Related Materials Conference Proceedings (Princeton Univ, Princeton, New Jersey, 2006), pp. 429-430.
[PubMed]

F.  Gan, T.  Barwicz, M. A.  Popovic, M. S.  Dahlem, C. W.  Holzwarth, P. T.  Rakich, H. I.  Smith, E. P.  Ippen, and F. X.  Kärtner, "Maximizing the thermo-optic tuning range of silicon photonic structures", in Proceeding of IEEE Conference on Photonics in Switching (San Francisco, CA, 2007), pp. 67-68.

T. Tsuchizawa, T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi, and H. Morita, "Fabrication and evaluation of submicron-square Si wire waveguides with spot-size converters", in Proceedings of IEEE Annual Meeting of Lasers and Electro-Optics Society (Glasgow, Scotland, 2002), pp. 287-288.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic structure used in the calculation of the coupling coefficient.

Fig. 2.
Fig. 2.

Coupling coefficient of the MRR with the radius of 5 μm.

Fig. 3.
Fig. 3.

Relationship between the performance of the add-drop MRR and its coupling coefficient: (a) schematic structure of the add-drop MRR; (b) dependence of the 3-dB bandwidth at the drop port on k 2; (c), (d) and (e) dependence of the normalized amplitude at the drop port and the through port on k 2 when the MRR is on-resonant.

Fig. 4.
Fig. 4.

Schematic structure of the four-channel ROADM.

Fig. 5.
Fig. 5.

(a) Optical field distribution of the PWW with 500-nm-thick cladding for the TM (upper) and TE (lower) mode; (b) ERI of the fundamental mode of the PWW surrounded by SL and metal; (c) optical field distribution of the waveguide with 500-nm-thick SL for the TM (upper) and TE (lower) mode; (d) optical field distribution of the waveguide with 1200-nm-thick SL for the TM (upper) and TE (lower) mode.

Fig. 6.
Fig. 6.

Micrographs of the fabricated ROADM: (a) Scanning electron microscope (SEM) picture of the SSC; (b) SEM picture of the end face of the SSC; (c) SEM picture of the add-drop MRR; (d) SEM picture of the heater pattern; (e) microscope picture of the whole structure of the ROADM.

Fig. 7.
Fig. 7.

Response spectra of the add-drop MRRs with different gaps measured at their drop ports.

Fig. 8.
Fig. 8.

Comparison between the experimental results and the simulation results, (a) is for the TE mode and (b) for the TM mode.

Fig. 9.
Fig. 9.

Response spectra of “input to drops”. Black curve shows the response spectra at the power consumption of 0 mW, red curve at 23.5 mW, green curve at 48.3 mW, blue curve at 74.3 mW and cyan curve at 103.9 mW.

Fig. 10.
Fig. 10.

Response spectra of “input to output”. Black curve shows the response spectra at the power consumption of 0 mW, red curve at 23.5 mW, green curve at 48.3 mW, blue curve at 74.3 mW and cyan curve at 103.9 mW.

Fig. 11.
Fig. 11.

Response spectra of “adds to output”. Black curve shows the response spectra at the power consumption of 0 mW, red curve at 23.5 mW, green curve at 48.3 mW, blue curve at 74.3 mW and cyan curve at 103.9 mW.

Fig. 12.
Fig. 12.

Response spectra of “adds to drops”. Black curve shows the response spectra at the power consumption of 0 mW, red curve at 23.5 mW, green curve at 48.3 mW, blue curve at 74.3 mW and cyan curve at 103.9 mW.

Fig. 13.
Fig. 13.

Time response of the ROADM.

Fig. 14.
Fig. 14.

Phenomena of the thermo-optic polarization-rotation effect. Black curve shows the response spectra at the voltage of 1.2V, red curve at 1.6V and green curve at 2.1V.

Tables (1)

Tables Icon

Table 1. Main performance of the ROADM in different configurations.

Metrics