Abstract

The phenomenon of Optical Phase Conjugation (OPC) can be rigorously simulated using the pseudospectral time-domain (PSTD) technique. However, with finite computational memory, it is infeasible to simulate light propagating long optical paths. We report a robust OPC simulation technique that can account for long optical path lengths by sequentially inverting the electromagnetic fields. Specifically, the ideal efficiency of OPC refocusing of light through scattering medium can be accurately determined.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nature Photonics 2, 110-115 (2008).
    [CrossRef] [PubMed]
  2. S. H. Tseng and C. Yang, "2-D PSTD Simulation of optical phase conjugation for turbidity suppression," Optics Express 15, 16005-16016 (2007).
    [CrossRef] [PubMed]
  3. Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999).
    [CrossRef]
  4. Q. H. Liu, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw. Opt. Technol. Let. 15, 158-165 (1997).
    [CrossRef]
  5. F. Charra and J. M. Nunzi, "Nondegenerate Multiwave Mixing in Polydiacetylene - Phase Conjugation with Frequency-Conversion," J. Opt. Soc. Am. B-Opt. Phys. 8, 570-577 (1991).
    [CrossRef]
  6. D. Gabor, "A New Microscopic Principle," Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  7. R. W. Hellwarth, "Generation of Time-Reversed Wave Fronts by Nonlinear Refraction," J. Opt. Soc. Am. 67, 1-3 (1977).
    [CrossRef]
  8. W. Lukosz, "Equivalent-Lens Theory of Holographic Imaging," J. Opt. Soc. Am. 58, 1084-& (1968).
    [CrossRef]
  9. A. Yariv, "Phase Conjugate Optics and Real-Time Holography," IEEE J. Quantum Electron. 14, 650-660 (1978).
    [CrossRef]

2008

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nature Photonics 2, 110-115 (2008).
[CrossRef] [PubMed]

2007

S. H. Tseng and C. Yang, "2-D PSTD Simulation of optical phase conjugation for turbidity suppression," Optics Express 15, 16005-16016 (2007).
[CrossRef] [PubMed]

1999

Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999).
[CrossRef]

1997

Q. H. Liu, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw. Opt. Technol. Let. 15, 158-165 (1997).
[CrossRef]

1991

F. Charra and J. M. Nunzi, "Nondegenerate Multiwave Mixing in Polydiacetylene - Phase Conjugation with Frequency-Conversion," J. Opt. Soc. Am. B-Opt. Phys. 8, 570-577 (1991).
[CrossRef]

1978

A. Yariv, "Phase Conjugate Optics and Real-Time Holography," IEEE J. Quantum Electron. 14, 650-660 (1978).
[CrossRef]

1977

1968

1948

D. Gabor, "A New Microscopic Principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Charra, F.

F. Charra and J. M. Nunzi, "Nondegenerate Multiwave Mixing in Polydiacetylene - Phase Conjugation with Frequency-Conversion," J. Opt. Soc. Am. B-Opt. Phys. 8, 570-577 (1991).
[CrossRef]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nature Photonics 2, 110-115 (2008).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, "A New Microscopic Principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Hellwarth, R. W.

Liu, Q. H.

Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999).
[CrossRef]

Q. H. Liu, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw. Opt. Technol. Let. 15, 158-165 (1997).
[CrossRef]

Lukosz, W.

Nunzi, J. M.

F. Charra and J. M. Nunzi, "Nondegenerate Multiwave Mixing in Polydiacetylene - Phase Conjugation with Frequency-Conversion," J. Opt. Soc. Am. B-Opt. Phys. 8, 570-577 (1991).
[CrossRef]

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nature Photonics 2, 110-115 (2008).
[CrossRef] [PubMed]

Tseng, S. H.

S. H. Tseng and C. Yang, "2-D PSTD Simulation of optical phase conjugation for turbidity suppression," Optics Express 15, 16005-16016 (2007).
[CrossRef] [PubMed]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nature Photonics 2, 110-115 (2008).
[CrossRef] [PubMed]

S. H. Tseng and C. Yang, "2-D PSTD Simulation of optical phase conjugation for turbidity suppression," Optics Express 15, 16005-16016 (2007).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nature Photonics 2, 110-115 (2008).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, "Phase Conjugate Optics and Real-Time Holography," IEEE J. Quantum Electron. 14, 650-660 (1978).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, "Phase Conjugate Optics and Real-Time Holography," IEEE J. Quantum Electron. 14, 650-660 (1978).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B-Opt. Phys.

F. Charra and J. M. Nunzi, "Nondegenerate Multiwave Mixing in Polydiacetylene - Phase Conjugation with Frequency-Conversion," J. Opt. Soc. Am. B-Opt. Phys. 8, 570-577 (1991).
[CrossRef]

Microw. Opt. Technol. Let.

Q. H. Liu, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw. Opt. Technol. Let. 15, 158-165 (1997).
[CrossRef]

Nature

D. Gabor, "A New Microscopic Principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Nature Photonics

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nature Photonics 2, 110-115 (2008).
[CrossRef] [PubMed]

Optics Express

S. H. Tseng and C. Yang, "2-D PSTD Simulation of optical phase conjugation for turbidity suppression," Optics Express 15, 16005-16016 (2007).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (3285 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the serial OPC simulation. Incident light multiply scatters through a scattering medium consisting of N dielectric cylinders. To account for light traveling long optical paths before undergoing OPC, the electric field and magnetic field in the OPC inversion region is sequentially recorded. The recorded field information is later inserted sequentially to simulate OPC phenomenon while accounting for light propagating long optical paths.

Fig. 2.
Fig. 2.

The electric fields and magnetic fields of the OPC inversion region are recorded every T timesteps (corresponding to 0.2 ps). Electromagnetic fields at equal time intervals (T = 4000 timesteps) are stored in series: (a): 1×T, (b): 2×T, (c): 3×T, and (d): 4×T. The interval T is chosen so that the OPC inversion fields overlap each other. The recorded field information is later inserted sequentially to simulate OPC reversed light propagation.

Fig. 3.
Fig. 3.

The recorded electric fields and magnetic fields are sequentially inserted into the OPC inversion region every T timesteps to simulate light propagating long optical paths.

Fig. 4.
Fig. 4.

(Media 1) Sequentially stitching the OPC inverted field to reconstruct the OPC reversed propagation of light. The E- fields of the OPC inverted field at various time steps are shown: T = (a) 59001, (b) 60000, (c) 60001, and (d) 61000 timesteps. (a): after OPC, light propagates in the reverse direction (towards left); defect of the reconstructed wavefront is a result of OPC inversion of incomplete electromagnetic field. Later, as shown in (b) and (c), the next OPC inverted field is inserted to replace the artifacts, resulting in (d): a perfect OPC reversed propagation of light.

Fig. 5.
Fig. 5.

The total OPC refocused energy vs. duration of the serial OPC simulation. Light traveling long optical paths before reaching the OPC inversion region is accommodated by long duration of the serial OPC simulation. Ideally, the total OPC refocused energy is the total energy of light that impinges the PCM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H H , B B ,

Metrics