Abstract

A new photonic RF instantaneous frequency measurement system is proposed and experimentally demonstrated. A frequency measurement independent of the optical input power and microwave modulation index is achieved by using the constructive and destructive ports of a polarization-domain interferometer. Experimental tests yield a peak-to-peak frequency error lower than 200 MHz for a frequency range of 1–18 GHz.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Aikawa and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory Tech. 37, 406-413 (1989).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
    [CrossRef]
  3. L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
    [CrossRef]
  4. X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement with Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
    [CrossRef]
  5. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced Cost Photonic Instantaneous Frequency Measurement System," IEEE Photon. Technol. Lett. 20, 1521-1523 (2008).
    [CrossRef]
  6. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RFinstantaneous frequency measurementsystem using photonic Hilbert transform," Opt. Express 16, 13707-13712 (2008).
    [CrossRef] [PubMed]
  7. H. Chi, X. Zou, and J. Yao, "An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
    [CrossRef]

2008 (4)

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement with Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced Cost Photonic Instantaneous Frequency Measurement System," IEEE Photon. Technol. Lett. 20, 1521-1523 (2008).
[CrossRef]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RFinstantaneous frequency measurementsystem using photonic Hilbert transform," Opt. Express 16, 13707-13712 (2008).
[CrossRef] [PubMed]

H. Chi, X. Zou, and J. Yao, "An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

2006 (2)

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

1989 (1)

M. Aikawa and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory Tech. 37, 406-413 (1989).
[CrossRef]

Aikawa, M.

M. Aikawa and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory Tech. 37, 406-413 (1989).
[CrossRef]

Bui, L.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced Cost Photonic Instantaneous Frequency Measurement System," IEEE Photon. Technol. Lett. 20, 1521-1523 (2008).
[CrossRef]

Bui, L. A.

Chi, H.

H. Chi, X. Zou, and J. Yao, "An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

Emami, H.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RFinstantaneous frequency measurementsystem using photonic Hilbert transform," Opt. Express 16, 13707-13712 (2008).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced Cost Photonic Instantaneous Frequency Measurement System," IEEE Photon. Technol. Lett. 20, 1521-1523 (2008).
[CrossRef]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

Mitchell, A.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced Cost Photonic Instantaneous Frequency Measurement System," IEEE Photon. Technol. Lett. 20, 1521-1523 (2008).
[CrossRef]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RFinstantaneous frequency measurementsystem using photonic Hilbert transform," Opt. Express 16, 13707-13712 (2008).
[CrossRef] [PubMed]

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

Ogawa, H.

M. Aikawa and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory Tech. 37, 406-413 (1989).
[CrossRef]

Sarkhosh, N.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RFinstantaneous frequency measurementsystem using photonic Hilbert transform," Opt. Express 16, 13707-13712 (2008).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced Cost Photonic Instantaneous Frequency Measurement System," IEEE Photon. Technol. Lett. 20, 1521-1523 (2008).
[CrossRef]

Seeds, A. J.

Williams, K. J.

Yao, J.

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement with Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

H. Chi, X. Zou, and J. Yao, "An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

Zou, X.

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement with Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

H. Chi, X. Zou, and J. Yao, "An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement with Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced Cost Photonic Instantaneous Frequency Measurement System," IEEE Photon. Technol. Lett. 20, 1521-1523 (2008).
[CrossRef]

H. Chi, X. Zou, and J. Yao, "An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Aikawa and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory Tech. 37, 406-413 (1989).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) Scheme of the proposed IFM system.

Fig. 2.
Fig. 2.

(Color online) Operation principle of the polarization-based interferometer. Constructive port (solid line), destructive port (dashed line) and ACF (dashed-dotted line).

Fig. 3.
Fig. 3.

(Color online) IFM system results. (a) Measured optical powers and (b) ACF for a RF input power of -9 dBm.

Fig. 3.
Fig. 3.

(Color online) (a) Measured RF frequency and (b) frequency error for various RF input powers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = E CW e j ω CW t sin [ π z v RF ( t ) ] ,
S PMF ( f ) = S ( f ) { cos ( θ 1 ) x ̂ + sin ( θ 1 ) e j 2 π f τ y ̂ } ,
S PC 3 ( f ) = S PMF ( f ) { x ̂ [ cos ( θ 2 ) x ̂ + sin ( θ 2 ) y ̂ ] + y ̂ [ cos ( θ 2 ) y ̂ sin ( θ 2 ) x ̂ ] } .
S PC 3 ( f ) = S ( f ) { cos ( θ 1 ) [ cos ( θ 2 ) x ̂ + sin ( θ 2 ) y ̂ ] + sin ( θ 1 ) e j 2 π f τ [ cos ( θ 2 ) y ̂ sin ( θ 2 ) x ̂ ] } .
S PBS , x ( f ) = S ( f ) { cos ( θ 1 ) cos ( θ 2 ) sin ( θ 1 ) sin ( θ 2 ) e j 2 π f τ
S PBS , y ( f ) = S ( f ) { cos ( θ 1 ) sin ( θ 2 ) + sin ( θ 1 ) cos ( θ 2 ) e j 2 π f τ .
ACF ( f ) = S PBS , x ( f ) + S PBS , y ( f ) 10 ER x 20 S PBS , y ( f ) + S PBS , x ( f ) 10 ER y 20 α ,

Metrics