Abstract

A novel wavelength-switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser (EDFL) implemented based on a sigma architecture that is composed of a ring loop and a linear standing wave arm is experimentally demonstrated. Gain competition that prevents stable dual-wavelength oscillation is effectively suppressed by placing the gain medium in the standing-wave arm and by introducing polarization hole burning (PHB) via polarization multiplexing of the two lasing wavelengths in the ring loop. The SLM operation is guaranteed by an ultranarrow Fabry-Perot filter (FPF) introduced by absorption saturation in an unpumped erbium-doped fiber (EDF) and the gain saturation in the gain medium. In addition, the ring cavity forms a Lyot filter for each wavelength. Thus, wavelength switching is achieved by simply adjusting the polarization state of either wavelength. By beating the two SLM wavelengths at a photodetector (PD), a microwave signal with a frequency tunable from ~10 to ~50 GHz is experimentally generated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
    [CrossRef]
  2. S. L. Pan, X. F. Zhao, and C. Y. Lou, "Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier," Opt. Lett. 33, 764-766 (2008).
    [CrossRef] [PubMed]
  3. J. R. Qian, J. Su, and L. Hong, "A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode," Opt. Commun. 281, 4432-4434 (2008).
    [CrossRef]
  4. G. Chen, D. Huang, X. Zhang, and H. Cao, "Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber," Opt. Lett. 33, 554-556 (2008).
    [CrossRef] [PubMed]
  5. X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microwave Theory Tech. 54, 804-809 (2006).
    [CrossRef]
  6. Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
    [CrossRef]
  7. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
    [CrossRef]
  8. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
    [CrossRef]
  9. L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave signal generation with injection-locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
    [CrossRef]
  10. R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum-well laser-diodes," Electron. Lett. 28, 82-83 (1992).
    [CrossRef]
  11. G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
    [CrossRef]
  12. X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
    [CrossRef]
  13. E. Desurvire, Erbium-doped fiber amplifiers: Principles and Applications (John Wiley& Sons, 1994), 295-302.
  14. K. Zhang and J. U. Kang, "C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser," Opt. Express 16, 14173-14179 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14173.
    [CrossRef] [PubMed]
  15. S. Pan and C. Lou, "Stable multiwavelength erbium-doped fiber laser at room temperature with tunable wavelength, wavelength spacing, and channel number," Opt. Eng. 45, 114203 (2006).
    [CrossRef]
  16. R. Kashyap, Fiber Bragg Gratings (Academic Press, New York, 1999), 355-408.
    [CrossRef]
  17. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, "A high responsivity, broadband waveguide uni-travelling carrier photodiode," Proc. SPIE 6194, 61940C-8 (2006).
    [CrossRef]

2008 (5)

2006 (4)

S. Pan and C. Lou, "Stable multiwavelength erbium-doped fiber laser at room temperature with tunable wavelength, wavelength spacing, and channel number," Opt. Eng. 45, 114203 (2006).
[CrossRef]

X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microwave Theory Tech. 54, 804-809 (2006).
[CrossRef]

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
[CrossRef]

2005 (1)

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

2004 (2)

X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

1992 (1)

R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum-well laser-diodes," Electron. Lett. 28, 82-83 (1992).
[CrossRef]

1983 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave signal generation with injection-locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
[CrossRef]

Bélisle, C.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Bloom, D. M.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave signal generation with injection-locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
[CrossRef]

Cao, H.

Chen, G.

Chen, X.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
[CrossRef]

Chen, X. F.

X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microwave Theory Tech. 54, 804-809 (2006).
[CrossRef]

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
[CrossRef]

Cheng, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
[CrossRef]

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
[CrossRef]

Dai, Y. T.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
[CrossRef]

Deng, Z. C.

X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microwave Theory Tech. 54, 804-809 (2006).
[CrossRef]

Dong, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
[CrossRef]

Dong, X. Y.

X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

Feng, X. H.

X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

Fu, S. G.

X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

Goldberg, L.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave signal generation with injection-locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
[CrossRef]

Hong, L.

J. R. Qian, J. Su, and L. Hong, "A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode," Opt. Commun. 281, 4432-4434 (2008).
[CrossRef]

Huang, D.

Kang, J. U.

Liu, J.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Liu, Y. G.

X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

Lou, C.

S. Pan and C. Lou, "Stable multiwavelength erbium-doped fiber laser at room temperature with tunable wavelength, wavelength spacing, and channel number," Opt. Eng. 45, 114203 (2006).
[CrossRef]

Lou, C. Y.

Pan, S.

S. Pan and C. Lou, "Stable multiwavelength erbium-doped fiber laser at room temperature with tunable wavelength, wavelength spacing, and channel number," Opt. Eng. 45, 114203 (2006).
[CrossRef]

Pan, S. L.

Paquet, S.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Qi, G. H.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Qian, J. R.

J. R. Qian, J. Su, and L. Hong, "A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode," Opt. Commun. 281, 4432-4434 (2008).
[CrossRef]

Ramos, R. T.

R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum-well laser-diodes," Electron. Lett. 28, 82-83 (1992).
[CrossRef]

Seeds, A. J.

R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum-well laser-diodes," Electron. Lett. 28, 82-83 (1992).
[CrossRef]

Seregelyi, J.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Shum, P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
[CrossRef]

Su, J.

J. R. Qian, J. Su, and L. Hong, "A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode," Opt. Commun. 281, 4432-4434 (2008).
[CrossRef]

Sun, J.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
[CrossRef]

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave signal generation with injection-locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
[CrossRef]

Weller, J. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave signal generation with injection-locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
[CrossRef]

Xia, L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
[CrossRef]

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
[CrossRef]

Xie, S. Z.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
[CrossRef]

Yao, J.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Yao, J. P.

X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microwave Theory Tech. 54, 804-809 (2006).
[CrossRef]

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Yao, Y.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
[CrossRef]

Yeap, T. H.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Yuan, S. Z.

X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

Zhang, K.

Zhang, X.

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
[CrossRef]

Zhao, X. F.

Zhou, J. L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
[CrossRef]

Appl. Phys. B (1)

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
[CrossRef]

Electron. Lett. (2)

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave signal generation with injection-locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
[CrossRef]

R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum-well laser-diodes," Electron. Lett. 28, 82-83 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
[CrossRef]

X. H. Feng, Y. G. Liu, S. G. Fu, S. Z. Yuan, and X. Y. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microwave Theory Tech. 54, 804-809 (2006).
[CrossRef]

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Opt. Commun. (1)

J. R. Qian, J. Su, and L. Hong, "A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode," Opt. Commun. 281, 4432-4434 (2008).
[CrossRef]

Opt. Eng. (1)

S. Pan and C. Lou, "Stable multiwavelength erbium-doped fiber laser at room temperature with tunable wavelength, wavelength spacing, and channel number," Opt. Eng. 45, 114203 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (3)

R. Kashyap, Fiber Bragg Gratings (Academic Press, New York, 1999), 355-408.
[CrossRef]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, "A high responsivity, broadband waveguide uni-travelling carrier photodiode," Proc. SPIE 6194, 61940C-8 (2006).
[CrossRef]

E. Desurvire, Erbium-doped fiber amplifiers: Principles and Applications (John Wiley& Sons, 1994), 295-302.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Configuration of the wavelength-switchable SLM dual-wavelength EDFL. EDF: erbium-doped fiber; LD: laser diode; WDM: wavelength-division multiplexer; PC: polarization controller; PBC: polarization beam combiner; C: circulator; FFPI: fiber Fabry-Perot interferometer, ATT: attenuator. (b) Open loop transmission spectra. Red solid line: Channel 1; Blue dotted line: Channel 2.

Fig. 2.
Fig. 2.

Generation of 10-GHz microwave signal using the proposed fiber laser. (a) The optical spectra measured at a 3-min interval over a 36-min period; (b) the electrical spectra measured at a 3-min interval over a 36-min period, with RBW = 300 kHz; (c) the zoom-in view of the beating signal at SPAN = 1 MHz, RBW = 9.1 kHz.

Fig. 3.
Fig. 3.

The spectra of (a) the optical signal and (b) the generated electrical signal, with a frequency tuned from 10 to 40 GHz, RBW = 300 kHz.

Fig. 4.
Fig. 4.

Generation of a 50-GHz signal using the proposed fiber laser. (a) The optical spectrum; (b) the electrical spectrum at SPAN = 1 GHz, RBW = 300 kHz; (c) the zoom-in view of the 50-GHz signal at SPAN = 1 MHz, RBW = 9.1 kHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = cos 2 ( 2 πc λ ·Δ τ + θ ) ,

Metrics