Abstract

We report on the fast (~50 μs) remote-controlled switching between continuous-wave (cw), cw mode-locked (ML) and Q-switched ML modes of operation of a Nd:YVO4 laser using an optically-pumped saturable absorber (SA). Pulses as short as 40 ps with an average output power of 0.5 W are obtained in cw ML regime.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and applications, (Marcel Dekker Inc, 2003), ISBN 0-8247-0841-5 .
  2. F. Dausinger, F. Lichtner, and H. Lubatschowski, "Femtosecond Technology for technical and medical applications," Top. Appl. Phys. 96, Springer, ISBN 3-540-20114-9 (2004).
  3. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006).
    [CrossRef] [PubMed]
  4. B. Agate, C. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004).
    [CrossRef] [PubMed]
  5. J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, "Optical trapping and surgery of living yeast cells using a single laser," Rev. Sci. Instrum. 79, 103705-103705-5 (2008).
    [CrossRef] [PubMed]
  6. W. Seitz, R. Ell, U. Morgner, T. R. Schibli, F. X. Kärtner, M. J. Lederer, and B. Braun, "All-optical active mode locking with a nonlinear semiconductor modulator," Opt. Lett. 27, 2209-2211 (2002).
    [CrossRef]
  7. M. Guina and O. G. Okhotnikov, "Harmonic mode locking by synchronous optical pumping of a saturable absorber with the residual pump," Opt. Lett. 28, 358-360 (2003).
    [CrossRef] [PubMed]
  8. S. Hais, M. Getbehead, and A. Pirich, "Q-switched / CW pulse trains produced by mode-locked fiber laser," Proc. SPIE 4042, 17-23 (2000).
    [CrossRef]
  9. A. McWilliam, A. A. Lagatsky, C. T. A. Brown, W. Sibbett, A. E. Zhukov, V. M. Ustinov, A. P. Vasil'ev, and E. U. Rafailov, "Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser," Opt. Lett. 31, 1444-1446 (2006).
    [CrossRef] [PubMed]
  10. B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, "Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti:sapphire laser," Electron. Lett. 40 (2004).
    [CrossRef]
  11. S. Giet, C. -L. Lee, S. Calvez, M. D. Dawson, N. Destouches, J. -C. Pommier, and O. Parriaux, "Stabilization of a semiconductor disk laser using an intra-cavity high reflectivity grating," Opt. Express 15, 16520-16526 (2007).
    [CrossRef] [PubMed]
  12. N. Hempler, J. M. Hopkins, A. J. Kemp, N. Schulz, M. Rattunde, J. Wagner, M. D. Dawson, and D. Burns, "Pulsed pumping of semiconductor disk lasers," Opt. Express 15, 3247-3256 (2007).
    [CrossRef] [PubMed]
  13. W. Koechner, Solid-state laser engineering (Springer USA 2006).
  14. A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
    [CrossRef]
  15. D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, "High-average-power (>20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors," J. Opt. Soc. Am. B 17, 919-926 (2000).
    [CrossRef]
  16. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]

2007

2006

2005

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

2004

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, "Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti:sapphire laser," Electron. Lett. 40 (2004).
[CrossRef]

B. Agate, C. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004).
[CrossRef] [PubMed]

2003

2002

2000

1999

Agate, B.

Ando, J.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, "Optical trapping and surgery of living yeast cells using a single laser," Rev. Sci. Instrum. 79, 103705-103705-5 (2008).
[CrossRef] [PubMed]

Bautista, G.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, "Optical trapping and surgery of living yeast cells using a single laser," Rev. Sci. Instrum. 79, 103705-103705-5 (2008).
[CrossRef] [PubMed]

Bente, E.

Bland, S. W.

Braun, B.

Brown, C.

Brown, C. T. A.

Burns, D.

Calvez, S.

S. Giet, C. -L. Lee, S. Calvez, M. D. Dawson, N. Destouches, J. -C. Pommier, and O. Parriaux, "Stabilization of a semiconductor disk laser using an intra-cavity high reflectivity grating," Opt. Express 15, 16520-16526 (2007).
[CrossRef] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Cormack, I. G.

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, "Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti:sapphire laser," Electron. Lett. 40 (2004).
[CrossRef]

Daria, V. R.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, "Optical trapping and surgery of living yeast cells using a single laser," Rev. Sci. Instrum. 79, 103705-103705-5 (2008).
[CrossRef] [PubMed]

Davies, J. I.

Dawson, M. D.

Destouches, N.

Dholakia, K.

Ell, R.

Ferguson, A. I.

Fischer, P.

Fujita, K.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, "Optical trapping and surgery of living yeast cells using a single laser," Rev. Sci. Instrum. 79, 103705-103705-5 (2008).
[CrossRef] [PubMed]

Getbehead, M.

S. Hais, M. Getbehead, and A. Pirich, "Q-switched / CW pulse trains produced by mode-locked fiber laser," Proc. SPIE 4042, 17-23 (2000).
[CrossRef]

Giet, S.

Guina, M.

Gunn-Moore, F.

Hais, S.

S. Hais, M. Getbehead, and A. Pirich, "Q-switched / CW pulse trains produced by mode-locked fiber laser," Proc. SPIE 4042, 17-23 (2000).
[CrossRef]

Hastie, J. E.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Hempler, N.

Hetterich, M.

Hönninger, C.

Hopkins, J. M.

N. Hempler, J. M. Hopkins, A. J. Kemp, N. Schulz, M. Rattunde, J. Wagner, M. D. Dawson, and D. Burns, "Pulsed pumping of semiconductor disk lasers," Opt. Express 15, 3247-3256 (2007).
[CrossRef] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Kärtner, F. X.

Keller, U.

Kemp, A. J.

N. Hempler, J. M. Hopkins, A. J. Kemp, N. Schulz, M. Rattunde, J. Wagner, M. D. Dawson, and D. Burns, "Pulsed pumping of semiconductor disk lasers," Opt. Express 15, 3247-3256 (2007).
[CrossRef] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Lagatsky, A. A.

Lederer, M. J.

Lee, C. -L.

McWilliam, A.

Mooradian, A.

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, "Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti:sapphire laser," Electron. Lett. 40 (2004).
[CrossRef]

Morgner, U.

Morier-Genoud, F.

Moser, M.

Okhotnikov, O. G.

Parriaux, O.

Paschotta, R.

Pirich, A.

S. Hais, M. Getbehead, and A. Pirich, "Q-switched / CW pulse trains produced by mode-locked fiber laser," Proc. SPIE 4042, 17-23 (2000).
[CrossRef]

Pommier, J. -C.

Rafailov, E. U.

A. McWilliam, A. A. Lagatsky, C. T. A. Brown, W. Sibbett, A. E. Zhukov, V. M. Ustinov, A. P. Vasil'ev, and E. U. Rafailov, "Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser," Opt. Lett. 31, 1444-1446 (2006).
[CrossRef] [PubMed]

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, "Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti:sapphire laser," Electron. Lett. 40 (2004).
[CrossRef]

Rattunde, M.

Riches, A.

Schibli, T. R.

Schulz, N.

Seitz, W.

Sibbett, W.

Smith, N.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, "Optical trapping and surgery of living yeast cells using a single laser," Rev. Sci. Instrum. 79, 103705-103705-5 (2008).
[CrossRef] [PubMed]

Smith, S. A.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Stevenson, D.

Stormont, B.

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, "Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti:sapphire laser," Electron. Lett. 40 (2004).
[CrossRef]

Tsampoula, X.

Ustinov, V. M.

Valentine, G. J.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Vasil'ev, A. P.

Wagner, J.

Zhukov, A. E.

Electron. Lett.

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, "Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti:sapphire laser," Electron. Lett. 40 (2004).
[CrossRef]

IEEE J. Quantum Electron.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical- external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE

S. Hais, M. Getbehead, and A. Pirich, "Q-switched / CW pulse trains produced by mode-locked fiber laser," Proc. SPIE 4042, 17-23 (2000).
[CrossRef]

Other

W. Koechner, Solid-state laser engineering (Springer USA 2006).

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and applications, (Marcel Dekker Inc, 2003), ISBN 0-8247-0841-5 .

F. Dausinger, F. Lichtner, and H. Lubatschowski, "Femtosecond Technology for technical and medical applications," Top. Appl. Phys. 96, Springer, ISBN 3-540-20114-9 (2004).

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, "Optical trapping and surgery of living yeast cells using a single laser," Rev. Sci. Instrum. 79, 103705-103705-5 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental setup.

Fig. 2.
Fig. 2.

Typical Nd:YVO4 laser output traces under different external pump powers applied to the SA (0 W – black line, 0.74 W – red line, 0.89 W – blue line) and fixed pump power of the laser crystal (6 W). Inset: left – intensity autocorrelation trace of the cw ML pulse, right – corresponding optical spectrum.

Fig. 3.
Fig. 3.

(a) Map of laser oscillation state dependence on DLA and EDL power. The shaded region corresponds to the cw ML regime. (b) Nd:YVO4 laser output power as a function of DLA power at constant EDL power = 0.3 W. Open symbol corresponds to optical damage of the SA. (The power transfer characteristic of the Nd:YVO4 laser with the SA replaced by an HR mirror is shown for comparison.)

Fig. 4.
Fig. 4.

Typical temporal response of rapid state-switching of the Nd:YVO4 laser (blue). The applied EDL control pulse is also shown (red). Fig. 4). It is apparent that the first “spike” contains picosecond pulses; however, subsequent features modulate the cw state as seen in the Fig. 4.

Fig. 5.
Fig. 5.

Absorption spectra of the saturable absorber recorded at T = -10, 1, 12 °C respectively. At the laser wavelength, the absorption varies significantly with device temperature. This temperature dependence of the absorption coefficient relates directly to an inverse dependence in the saturation fluence of the device [16] – this dependence can then be exploited to vary the oscillation mode of the laser. From experimental data (dotted lines), the three cases shown here relate to the cw, cw ML, and QML laser oscillation states respectively.

Metrics