Abstract

We report two-photon photocurrent in a GaAs/AlGaAs multiple quantum well laser at 1.55μm. Using 1ps pulses, a purely quadratic photocurrent is observed. We measure the device efficiency, sensitivity, as well as the two-photon absorption coefficient. The results show that the device has potential for signal processing, autocorrelation and possibly two-photon source applications at sub-Watt power levels.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser pulse transmission and imaging through biological tissues,” Appl. Opt.  32, 554–558 (1993).
    [Crossref] [PubMed]
  2. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
    [Crossref]
  3. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett.  76, 3191–3193 (2000).
    [Crossref]
  4. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.  75, 325–342 (2003).
    [Crossref]
  5. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
    [Crossref]
  6. S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools,” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, 2008), Chap. 20.
    [Crossref]
  7. P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
    [Crossref]
  8. C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron.  12, 843–858 (2006).
    [Crossref]
  9. S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol.  22, 784–793 (2004).
    [Crossref]
  10. H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
    [Crossref]
  11. Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photon. Technol. Lett.  9, 493–495 (1997).
    [Crossref]
  12. R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
    [Crossref]
  13. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors,” Opt. Lett.  17, 658–660 (1992).
    [Crossref] [PubMed]
  14. F. R. Laughton, J. H. Marsh, and A. H. Kean, “Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator,” Electron. Lett.  28, 1663–1665 (1992).
    [Crossref]
  15. F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron.  30, 838–845 (1994).
    [Crossref]
  16. H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
    [Crossref]
  17. H. Schneider, T. Maier, H. C. Liu, and M. Walther, “Two-photon photocurrent autocorrelation using intersubband transitions at nearly-resonant excitation,” Opt. Express 16, 1523–1528 (2008).
    [Crossref] [PubMed]
  18. F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
    [Crossref]
  19. D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
    [Crossref]
  20. D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
    [Crossref]
  21. D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
    [Crossref]
  22. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
    [Crossref]
  23. T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
    [Crossref]
  24. D. J. Moss, T. Ido, and H. Sano, “Calculation of photogenerated carrier escape times in GaAs/AlGaAs quantum wells,” IEEE J. Quantum Electron.  30, 1015–1026 (1994).
    [Crossref]
  25. D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
    [Crossref]
  26. T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
    [Crossref]
  27. T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
    [Crossref]
  28. D. J. Moss, T. Ido, and H. Sano, “Photogenerated carrier sweep out times in strained InxGa1-xAs/InyAs1-yAs quantum well waveguide modulators at μ=1.55 μm,” Electron. Lett.  30, 405–406 (1994).
    [Crossref]
  29. D. J. Moss, M. Aoki, and H. Sano, “Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP MQW waveguide modulators,” Jpn. J. Appl. Phys.  33, 328–330 (1994).
    [Crossref]
  30. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
    [Crossref]
  31. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
    [Crossref]
  32. H. M. van Driel, “Semiconductor optics - On the path to entanglement,” Nat. Photononics 2, 212–213 (2008).
    [Crossref]
  33. A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications,” IEEE J. Quantum Electron.  24, 787–801 (1988).
    [Crossref]
  34. N. Holonyak, R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE. J. Quantum Electron.  16, 170–186 (1980).
    [Crossref]
  35. A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, (Oxford University Press, New York, 2006).
  36. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
    [Crossref]
  37. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
    [Crossref]
  38. A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
    [Crossref]
  39. H.-S. Chen, S.-L. Liu, and C. C. Yang, “Enhancement of multi-photon processes with carrier injection in a GaAs/AlGaAs quantum well laser structure,” Opt. Commun.  235, 163–167 (2004).
    [Crossref]
  40. A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of quasi-low-dimensional exciton systems,” Phys. Rev. B 45, 11339–11341 (1992).
    [Crossref]
  41. J. B. Khurgin, “Nonlinear response of the semiconductor quantum-confined structures near and below the middle of the bandgap,” J. Opt. Soc. Am. B 11, 624–631 (1994).
    [Crossref]
  42. H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
    [Crossref]
  43. F. R. Laughton, J. H. Marsh, and J. S. Roberts, “Intuitive model to include the effect of free-carrier absorption in calculating the two-photon absorption coefficient,” Appl. Phys. Lett.  60, 166–168 (1992).
    [Crossref]
  44. A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
    [Crossref]
  45. C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
    [Crossref]
  46. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).
  47. T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
    [Crossref]

2008 (5)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

H. Schneider, T. Maier, H. C. Liu, and M. Walther, “Two-photon photocurrent autocorrelation using intersubband transitions at nearly-resonant excitation,” Opt. Express 16, 1523–1528 (2008).
[Crossref] [PubMed]

H. M. van Driel, “Semiconductor optics - On the path to entanglement,” Nat. Photononics 2, 212–213 (2008).
[Crossref]

A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
[Crossref]

2006 (3)

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, (Oxford University Press, New York, 2006).

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron.  12, 843–858 (2006).
[Crossref]

2004 (2)

S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol.  22, 784–793 (2004).
[Crossref]

H.-S. Chen, S.-L. Liu, and C. C. Yang, “Enhancement of multi-photon processes with carrier injection in a GaAs/AlGaAs quantum well laser structure,” Opt. Commun.  235, 163–167 (2004).
[Crossref]

2003 (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.  75, 325–342 (2003).
[Crossref]

2002 (2)

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[Crossref]

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

2000 (1)

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett.  76, 3191–3193 (2000).
[Crossref]

1998 (1)

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

1997 (3)

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
[Crossref]

Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photon. Technol. Lett.  9, 493–495 (1997).
[Crossref]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
[Crossref]

1996 (1)

T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
[Crossref]

1995 (1)

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

1994 (7)

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron.  30, 838–845 (1994).
[Crossref]

T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Photogenerated carrier sweep out times in strained InxGa1-xAs/InyAs1-yAs quantum well waveguide modulators at μ=1.55 μm,” Electron. Lett.  30, 405–406 (1994).
[Crossref]

D. J. Moss, M. Aoki, and H. Sano, “Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP MQW waveguide modulators,” Jpn. J. Appl. Phys.  33, 328–330 (1994).
[Crossref]

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Calculation of photogenerated carrier escape times in GaAs/AlGaAs quantum wells,” IEEE J. Quantum Electron.  30, 1015–1026 (1994).
[Crossref]

J. B. Khurgin, “Nonlinear response of the semiconductor quantum-confined structures near and below the middle of the bandgap,” J. Opt. Soc. Am. B 11, 624–631 (1994).
[Crossref]

1993 (3)

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
[Crossref]

C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
[Crossref]

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser pulse transmission and imaging through biological tissues,” Appl. Opt.  32, 554–558 (1993).
[Crossref] [PubMed]

1992 (7)

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors,” Opt. Lett.  17, 658–660 (1992).
[Crossref] [PubMed]

F. R. Laughton, J. H. Marsh, and A. H. Kean, “Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator,” Electron. Lett.  28, 1663–1665 (1992).
[Crossref]

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

F. R. Laughton, J. H. Marsh, and J. S. Roberts, “Intuitive model to include the effect of free-carrier absorption in calculating the two-photon absorption coefficient,” Appl. Phys. Lett.  60, 166–168 (1992).
[Crossref]

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of quasi-low-dimensional exciton systems,” Phys. Rev. B 45, 11339–11341 (1992).
[Crossref]

1991 (5)

D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
[Crossref]

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
[Crossref]

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

1990 (1)

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

1988 (1)

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications,” IEEE J. Quantum Electron.  24, 787–801 (1988).
[Crossref]

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

1980 (1)

N. Holonyak, R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE. J. Quantum Electron.  16, 170–186 (1980).
[Crossref]

Aers, G.

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

Aitchison, J. S.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
[Crossref]

Alfano, R. R.

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser pulse transmission and imaging through biological tissues,” Appl. Opt.  32, 554–558 (1993).
[Crossref] [PubMed]

Andegeko, Y.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
[Crossref]

Andreadakis, N. C.

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Andrekson, P. A.

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications,” IEEE J. Quantum Electron.  24, 787–801 (1988).
[Crossref]

Aoki, M.

D. J. Moss, M. Aoki, and H. Sano, “Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP MQW waveguide modulators,” Jpn. J. Appl. Phys.  33, 328–330 (1994).
[Crossref]

Asghari, M.

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

Baltuska, A.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
[Crossref]

Barber, R.

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

Barrow, D. A.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron.  30, 838–845 (1994).
[Crossref]

Barry, L. P.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[Crossref]

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

Bhat, R.

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

Bradley, A. L.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[Crossref]

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett.  76, 3191–3193 (2000).
[Crossref]

Burrus, C. A.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

Chan, L. Y.

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

Charbonneau, S.

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

Chatenoud, F.

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
[Crossref]

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

Chen, H.-S.

H.-S. Chen, S.-L. Liu, and C. C. Yang, “Enhancement of multi-photon processes with carrier injection in a GaAs/AlGaAs quantum well laser structure,” Opt. Commun.  235, 163–167 (2004).
[Crossref]

Colas, E.

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Conn, D.

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.  75, 325–342 (2003).
[Crossref]

Cunningham, J. E.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
[Crossref]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

Dantus, M.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
[Crossref]

Dapkus, P. D.

N. Holonyak, R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE. J. Quantum Electron.  16, 170–186 (1980).
[Crossref]

Day, I. E.

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

Delage, A.

D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

deMiguel, J. L.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

Dion, M.

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
[Crossref]

Donegan, J. F.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[Crossref]

Dorrer, C.

C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron.  12, 843–858 (2006).
[Crossref]

Drake, J.

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

Dudley, J. M.

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

Dunbar, L. A.

Dupuis, R. D.

N. Holonyak, R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE. J. Quantum Electron.  16, 170–186 (1980).
[Crossref]

Dzurko, K.

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

Eggleton, B. J.

S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools,” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, 2008), Chap. 20.
[Crossref]

Eng, S. T.

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications,” IEEE J. Quantum Electron.  24, 787–801 (1988).
[Crossref]

Fishteyn, M.

S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol.  22, 784–793 (2004).
[Crossref]

Folliot, H.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[Crossref]

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

Fox, A. M.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
[Crossref]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
[Crossref]

Geraghty, G. F.

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

Grant, R. S.

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Guo, W. H.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

Halliday, D.

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

Halliday, D. P.

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

Harvey, J. D.

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

Hegarty, J.

Hobson, W. S.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

Holonyak, N.

N. Holonyak, R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE. J. Quantum Electron.  16, 170–186 (1980).
[Crossref]

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett.  76, 3191–3193 (2000).
[Crossref]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
[Crossref]

Ido, T.

T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Calculation of photogenerated carrier escape times in GaAs/AlGaAs quantum wells,” IEEE J. Quantum Electron.  30, 1015–1026 (1994).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Photogenerated carrier sweep out times in strained InxGa1-xAs/InyAs1-yAs quantum well waveguide modulators at μ=1.55 μm,” Electron. Lett.  30, 405–406 (1994).
[Crossref]

T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
[Crossref]

Imamura, S.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors,” Opt. Lett.  17, 658–660 (1992).
[Crossref] [PubMed]

Inoue, H.

T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
[Crossref]

Ironside, C. N.

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

Islam, M. N.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

Jan, W. Y.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
[Crossref]

Johnson, B. C.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
[Crossref]

Karkhanehchi, M. M.

Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photon. Technol. Lett.  9, 493–495 (1997).
[Crossref]

Kean, A. H.

F. R. Laughton, J. H. Marsh, and A. H. Kean, “Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator,” Electron. Lett.  28, 1663–1665 (1992).
[Crossref]

Khurgin, J. B.

Kims, M. S.

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Kiran, P. P.

A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
[Crossref]

Knights, A. P.

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

Kobayashi, T.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors,” Opt. Lett.  17, 658–660 (1992).
[Crossref] [PubMed]

Kolbas, R. M.

N. Holonyak, R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE. J. Quantum Electron.  16, 170–186 (1980).
[Crossref]

Koren, U.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

Koza, M. A.

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

Krug, T.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[Crossref]

Kumar, G. R.

A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
[Crossref]

Lad, A. D.

A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
[Crossref]

Landheer, D.

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
[Crossref]

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

Larsson, A.

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications,” IEEE J. Quantum Electron.  24, 787–801 (1988).
[Crossref]

Laughton, F. R.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron.  30, 838–845 (1994).
[Crossref]

F. R. Laughton, J. H. Marsh, and A. H. Kean, “Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator,” Electron. Lett.  28, 1663–1665 (1992).
[Crossref]

F. R. Laughton, J. H. Marsh, and J. S. Roberts, “Intuitive model to include the effect of free-carrier absorption in calculating the two-photon absorption coefficient,” Appl. Phys. Lett.  60, 166–168 (1992).
[Crossref]

LeBlanc, H. P.

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett.  76, 3191–3193 (2000).
[Crossref]

Levi, A. F. J.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

Liang, T. K.

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

Lin, C.-H.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
[Crossref]

C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
[Crossref]

Lin, H.-H.

C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
[Crossref]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
[Crossref]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

Liu, F.

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser pulse transmission and imaging through biological tissues,” Appl. Opt.  32, 554–558 (1993).
[Crossref] [PubMed]

Liu, H. C.

Liu, S.-L.

H.-S. Chen, S.-L. Liu, and C. C. Yang, “Enhancement of multi-photon processes with carrier injection in a GaAs/AlGaAs quantum well laser structure,” Opt. Commun.  235, 163–167 (2004).
[Crossref]

Livescu, G.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
[Crossref]

Lozovoy, V. V.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
[Crossref]

Lynch, M.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[Crossref]

Maguire, P. J.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

Mahamuni, S.

A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
[Crossref]

Maier, T.

Marsh, J. H.

Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photon. Technol. Lett.  9, 493–495 (1997).
[Crossref]

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron.  30, 838–845 (1994).
[Crossref]

F. R. Laughton, J. H. Marsh, and A. H. Kean, “Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator,” Electron. Lett.  28, 1663–1665 (1992).
[Crossref]

F. R. Laughton, J. H. Marsh, and J. S. Roberts, “Intuitive model to include the effect of free-carrier absorption in calculating the two-photon absorption coefficient,” Appl. Phys. Lett.  60, 166–168 (1992).
[Crossref]

Miller, B. I.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

Miller, D. A. B.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

More, D.

A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
[Crossref]

Moss, D.

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

Moss, D. J.

T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
[Crossref]

T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Photogenerated carrier sweep out times in strained InxGa1-xAs/InyAs1-yAs quantum well waveguide modulators at μ=1.55 μm,” Electron. Lett.  30, 405–406 (1994).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Calculation of photogenerated carrier escape times in GaAs/AlGaAs quantum wells,” IEEE J. Quantum Electron.  30, 1015–1026 (1994).
[Crossref]

D. J. Moss, M. Aoki, and H. Sano, “Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP MQW waveguide modulators,” Jpn. J. Appl. Phys.  33, 328–330 (1994).
[Crossref]

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools,” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, 2008), Chap. 20.
[Crossref]

O’Dowd, J.

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

Ogawa, T.

A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of quasi-low-dimensional exciton systems,” Phys. Rev. B 45, 11339–11341 (1992).
[Crossref]

Osgood, R. M.

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

Pastalan, J. Z.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

Penty, R. V.

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Portnoi, E. L.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron.  30, 838–845 (1994).
[Crossref]

Pshenichnikov, M. S.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
[Crossref]

Radic, S.

S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools,” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, 2008), Chap. 20.
[Crossref]

Ranka, J. K.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
[Crossref]

Reid, D. T.

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

Roberts, J. S.

F. R. Laughton, J. H. Marsh, and J. S. Roberts, “Intuitive model to include the effect of free-carrier absorption in calculating the two-photon absorption coefficient,” Appl. Phys. Lett.  60, 166–168 (1992).
[Crossref]

Sakaki, H.

A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of quasi-low-dimensional exciton systems,” Phys. Rev. B 45, 11339–11341 (1992).
[Crossref]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

Sano, H.

T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Calculation of photogenerated carrier escape times in GaAs/AlGaAs quantum wells,” IEEE J. Quantum Electron.  30, 1015–1026 (1994).
[Crossref]

T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
[Crossref]

D. J. Moss, T. Ido, and H. Sano, “Photogenerated carrier sweep out times in strained InxGa1-xAs/InyAs1-yAs quantum well waveguide modulators at μ=1.55 μm,” Electron. Lett.  30, 405–406 (1994).
[Crossref]

D. J. Moss, M. Aoki, and H. Sano, “Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP MQW waveguide modulators,” Jpn. J. Appl. Phys.  33, 328–330 (1994).
[Crossref]

Scelsi, G.

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

Schneider, H.

Shimizu, A.

A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of quasi-low-dimensional exciton systems,” Phys. Rev. B 45, 11339–11341 (1992).
[Crossref]

Sibbett, W.

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Slusher, R. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

Soccolich, C. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

Soole, J. B. D.

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
[Crossref]

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
[Crossref]

C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
[Crossref]

Takagi, Y.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors,” Opt. Lett.  17, 658–660 (1992).
[Crossref] [PubMed]

Takai, A.

T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
[Crossref]

Tanaka, S.

T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
[Crossref]

T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
[Crossref]

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett.  76, 3191–3193 (2000).
[Crossref]

Thomsen, B.

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

Tsang, H. K.

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Tsang, H.K.

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

van Driel, H. M.

H. M. van Driel, “Semiconductor optics - On the path to entanglement,” Nat. Photononics 2, 212–213 (2008).
[Crossref]

Villeneuve,

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
[Crossref]

C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
[Crossref]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
[Crossref]

Walther, M.

Weiner, A. M.

Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photon. Technol. Lett.  9, 493–495 (1997).
[Crossref]

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
[Crossref]

White, I. H.

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

Wielandy, S.

S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol.  22, 784–793 (2004).
[Crossref]

Wiersma, D. A.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
[Crossref]

Wood, T. H.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

Xi, P.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
[Crossref]

Yang, C. C.

H.-S. Chen, S.-L. Liu, and C. C. Yang, “Enhancement of multi-photon processes with carrier injection in a GaAs/AlGaAs quantum well laser structure,” Opt. Commun.  235, 163–167 (2004).
[Crossref]

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
[Crossref]

C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, (Oxford University Press, New York, 2006).

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications,” IEEE J. Quantum Electron.  24, 787–801 (1988).
[Crossref]

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.  75, 325–342 (2003).
[Crossref]

Yeh, P.

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, (Oxford University Press, New York, 2006).

Yoo, K. M.

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser pulse transmission and imaging through biological tissues,” Appl. Opt.  32, 554–558 (1993).
[Crossref] [PubMed]

Yoshihara, K.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors,” Opt. Lett.  17, 658–660 (1992).
[Crossref] [PubMed]

Young, M. G.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

Zheng, Z.

Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photon. Technol. Lett.  9, 493–495 (1997).
[Crossref]

Zhu, B.

S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol.  22, 784–793 (2004).
[Crossref]

Appl. Opt (1)

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser pulse transmission and imaging through biological tissues,” Appl. Opt.  32, 554–558 (1993).
[Crossref] [PubMed]

Appl. Phys. Lett (7)

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett.  76, 3191–3193 (2000).
[Crossref]

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation,” Appl. Phys. Lett.  57, 1081–1083 (1990).
[Crossref]

D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, “Time resolved photo luminescence studies in a reverse biased QW laser structure,” Appl. Phys. Lett.  61, 2497–2499 (1992).
[Crossref]

F. R. Laughton, J. H. Marsh, and J. S. Roberts, “Intuitive model to include the effect of free-carrier absorption in calculating the two-photon absorption coefficient,” Appl. Phys. Lett.  60, 166–168 (1992).
[Crossref]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett.  62, 2465–2467 (1993).
[Crossref]

T. K. Liang, H.K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett 81, 1323–1325 (2002).
[Crossref]

A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.  92, 043126 (2008).
[Crossref]

Can. J. Phys (2)

F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, “GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators,” Can. J. Phys.  69, 491–496 (1991).
[Crossref]

D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, “Laser compatible waveguide modulators,” Can. J. Phys.  69, 497–507 (1991).
[Crossref]

Electron. Lett (4)

D. J. Moss, T. Ido, and H. Sano, “Photogenerated carrier sweep out times in strained InxGa1-xAs/InyAs1-yAs quantum well waveguide modulators at μ=1.55 μm,” Electron. Lett.  30, 405–406 (1994).
[Crossref]

H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims, and W. Sibbett, “GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm,” Electron. Lett.  27, 1993–1995 (1991).
[Crossref]

F. R. Laughton, J. H. Marsh, and A. H. Kean, “Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator,” Electron. Lett.  28, 1663–1665 (1992).
[Crossref]

H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, “High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides,” Electron. Lett.  31, 1773–1775 (1995).
[Crossref]

IEEE J. Lightwave Technol (1)

T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” IEEE J. Lightwave Technol.  14, 2324–2331 (1996).
[Crossref]

IEEE J. Quantum Electron (7)

D. J. Moss, T. Ido, and H. Sano, “Calculation of photogenerated carrier escape times in GaAs/AlGaAs quantum wells,” IEEE J. Quantum Electron.  30, 1015–1026 (1994).
[Crossref]

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, ”Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.  27, 2281–2295 (1991).
[Crossref]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.  33, 341–348 (1997).
[Crossref]

Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron.  30, 1172–1175 (1994).
[Crossref]

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications,” IEEE J. Quantum Electron.  24, 787–801 (1988).
[Crossref]

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron.  30, 838–845 (1994).
[Crossref]

C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides,” IEEE J. Quantum Electron.  29, 2934–2939 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron.  12, 843–858 (2006).
[Crossref]

IEEE Photon. Technol. Lett (3)

Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photon. Technol. Lett.  9, 493–495 (1997).
[Crossref]

D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, “Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs,” IEEE Photon. Technol. Lett.  3, 645–647 (1991).
[Crossref]

T. Ido, H. Sano, D. J. Moss, S. Tanaka, and A. Takai, “Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage,” IEEE Photon. Technol. Lett.  6, 1207–1209 (1994).
[Crossref]

IEEE. J. Quantum Electron (1)

N. Holonyak, R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE. J. Quantum Electron.  16, 170–186 (1980).
[Crossref]

J. Appl. Phys (1)

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides,” J. Appl. Phys.  71, 1927–1935 (1992).
[Crossref]

J. Lightwave Technol (2)

P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Lightwave Technol.  24, 2683–2692 (2006).
[Crossref]

S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol.  22, 784–793 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys (1)

D. J. Moss, M. Aoki, and H. Sano, “Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP MQW waveguide modulators,” Jpn. J. Appl. Phys.  33, 328–330 (1994).
[Crossref]

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008).
[Crossref]

Nat. Photononics (1)

H. M. van Driel, “Semiconductor optics - On the path to entanglement,” Nat. Photononics 2, 212–213 (2008).
[Crossref]

Opt. Commun (2)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.  281, 1841–1849 (2008).
[Crossref]

H.-S. Chen, S.-L. Liu, and C. C. Yang, “Enhancement of multi-photon processes with carrier injection in a GaAs/AlGaAs quantum well laser structure,” Opt. Commun.  235, 163–167 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett (2)

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.  22, 1344–1346 (1997).
[Crossref]

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors,” Opt. Lett.  17, 658–660 (1992).
[Crossref] [PubMed]

Opt. Photon. News (1)

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Opt. Photon. News 9, 8142–8144 (1998).

Photon. Technol. Lett (1)

D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud, and D. Conn, “High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure,” Photon. Technol. Lett.  4, 609–611 (1992).
[Crossref]

Phys. Rev. B (1)

A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of quasi-low-dimensional exciton systems,” Phys. Rev. B 45, 11339–11341 (1992).
[Crossref]

Phys. Rev. Lett (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett.  53, 2173–2176 (1984).
[Crossref]

Rev. Mod. Phys (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.  75, 325–342 (2003).
[Crossref]

Other (2)

S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools,” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, 2008), Chap. 20.
[Crossref]

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, (Oxford University Press, New York, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Doping and alloy profile and of the AlGaAs multilayer structure. Beryllium is used for p-type doping above the quantum wells, and Si is used for n-type doping below. The GaAs substrate is n-doped at 1026 cm-3. Inset: Zoom of undoped quantum well region.

Fig. 2.
Fig. 2.

Scanning electron microscopy pictures of device before (left) and after (right) metallization.

Fig. 3.
Fig. 3.

Light-Current and Voltage-Current curves for the device operated as a laser under forward bias.

Fig. 4.
Fig. 4.

(left) Linear bandgap measurement and (right) bias-dependant Stark shift.

Fig. 5.
Fig. 5.

Average photocurrent as a function of the input power in the waveguide. A log-log plot determines that the relation is purely quadratic, and hence that the photocurrent is a result of TPA .

Fig. 6.
Fig. 6.

Bias dependence of TPA photocurrent.

Fig. 7.
Fig. 7.

External MQW device efficiency.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

1 2 E g < hf < E g .
dI dz = αI β I 2 ,
dI dz = αI β I 2 δ I 3 ,
δ = σβ A ( t ) dt 2 hf [ 1 exp ( 1 ) ] .
I = α I 0 exp ( αz ) α + β I 0 ( 1 exp ( αz ) ) ,
d I TPA dz = β I 2 ,
I TPA = I 0 ( 1 exp ( αz ) F ) α β ln ( F ) ,
F = 1 + β α I 0 ( 1 exp ( αz ) ) .
I SPA = α SPA β ln ( F ) .
I abs = I SPA = I 0 α SPA α ( 1 exp ( αz ) ) .
α SPA β I o 1 βz .
N eh = η E abs hf d N eh dt = η P abs hf
J = η e P abs hf ,
J = η e P SPA hf + η e P TPA 2 hf .
η ext = Jhf e P 0 .
A eff = P I = [ E ( x , y ) 2 dxdy ] 2 E ( x , y ) 4 dxdy ,
P abs = A eff ( I SPA + I TPA ) .
J = η e 2 hf [ P 0 ( 1 exp ( αz ) F ) + A eff ( α SPA α SC ) β ln ( F ) ] .
J = η e 2 hf βz A eff P 0 2 ,
S = P peak · P avg ,
S J = J P peak . P avg ,

Metrics