Abstract

Emission spectral tomography (EST) has been adopted to test the three-dimensional distribution parameters of fluid fields, such as burning gas, flame and plasma etc. In most cases, emission spectral data received by the video cameras are enormous so that the emission spectral tomography calculation is often time-consuming. Hence, accelerating calculation becomes the chief factor that one must consider for the practical application of EST. To solve the problem, a hardware implementation method was proposed in this paper, which adopted a digital signal processor (DSP) DM642 in an emission spectral tomography test system. The EST algorithm was fulfilled in the DSP, then calculation results were transmitted to the main computer via the user datagram protocol. Compared with purely VC++ software implementations, this new approach can decrease the calculation time significantly.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bahl and J. A. Liburdy, "Three-dimensional image reconstruction using interferometric data from a limited field of view with noise," Appl. Opt. 30, 4218-4226 (1991).
    [CrossRef] [PubMed]
  2. Y. S. Cheng, "Two-dimensional grating interferometric imaging by computed tomography," Opt. Lett. 12, 230-233 (1987).
    [CrossRef] [PubMed]
  3. Y. Gao, X. D. He and Y. Gong, "Radon transform iteration based on beam-deflection optical tomography," Proc. SPIE 4221, 274-278 (2000).
    [CrossRef]
  4. L. I. Poplevina, I. M. Tokmulin, and G. N. Vishnyakov, "Emission spectral tomography of multijet plasma flow," Proc. SPIE 2241, 90-98 (1994).
    [CrossRef]
  5. M. Hino, T. Aono, M. Nakajima, and S. Yuta, "Light emission computed tomography system for plasma diagnostics," Appl. Opt. 26, 4742-4746 (1987).
    [CrossRef] [PubMed]
  6. X. Wan, S. Yu, G. Cai, Y. Gao, and J. Yi, "Three-dimensional plasma field reconstruction with multiobjective optimization emission spectral tomography," J. Opt. Soc. Am. A 21, 1161-1171 (2004).
    [CrossRef]
  7. X. Wan and A. Yin, "Denoising multicriterion iterative reconstruction in emission spectral tomography," Appl. Opt. 46, 1223-1232 (2007).
    [CrossRef] [PubMed]
  8. J. Wang, Y.-P. Lu and Y.-F. Cai, "The application of volumetric region growing in segmentation for volume data from industrial computed tomography," Proc. SPIE 6041, 112-117 (2005).
  9. J. S. Maltz, "Multiresolution constrained least-squares algorithm for direct estimation of time activity curves from dynamic ECT projection data, " Proc. SPIE 3979, 586-598 (2000).
    [CrossRef]
  10. V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
    [CrossRef]

2007 (1)

2005 (1)

J. Wang, Y.-P. Lu and Y.-F. Cai, "The application of volumetric region growing in segmentation for volume data from industrial computed tomography," Proc. SPIE 6041, 112-117 (2005).

2004 (1)

2003 (1)

V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
[CrossRef]

2000 (2)

J. S. Maltz, "Multiresolution constrained least-squares algorithm for direct estimation of time activity curves from dynamic ECT projection data, " Proc. SPIE 3979, 586-598 (2000).
[CrossRef]

Y. Gao, X. D. He and Y. Gong, "Radon transform iteration based on beam-deflection optical tomography," Proc. SPIE 4221, 274-278 (2000).
[CrossRef]

1994 (1)

L. I. Poplevina, I. M. Tokmulin, and G. N. Vishnyakov, "Emission spectral tomography of multijet plasma flow," Proc. SPIE 2241, 90-98 (1994).
[CrossRef]

1991 (1)

1987 (2)

Aono, T.

Bahl, S.

Bouchoux, S.

V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
[CrossRef]

Brost, V.

V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
[CrossRef]

Cai, G.

Cai, Y.-F.

J. Wang, Y.-P. Lu and Y.-F. Cai, "The application of volumetric region growing in segmentation for volume data from industrial computed tomography," Proc. SPIE 6041, 112-117 (2005).

Cheng, Y. S.

Gao, Y.

Gong, Y.

Y. Gao, X. D. He and Y. Gong, "Radon transform iteration based on beam-deflection optical tomography," Proc. SPIE 4221, 274-278 (2000).
[CrossRef]

Grapin, J. C.

V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
[CrossRef]

He, X. D.

Y. Gao, X. D. He and Y. Gong, "Radon transform iteration based on beam-deflection optical tomography," Proc. SPIE 4221, 274-278 (2000).
[CrossRef]

Hino, M.

Liburdy, J. A.

Lu, Y.-P.

J. Wang, Y.-P. Lu and Y.-F. Cai, "The application of volumetric region growing in segmentation for volume data from industrial computed tomography," Proc. SPIE 6041, 112-117 (2005).

Maltz, J. S.

J. S. Maltz, "Multiresolution constrained least-squares algorithm for direct estimation of time activity curves from dynamic ECT projection data, " Proc. SPIE 3979, 586-598 (2000).
[CrossRef]

Nakajima, M.

Paindavoine, M.

V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
[CrossRef]

Poplevina, L. I.

L. I. Poplevina, I. M. Tokmulin, and G. N. Vishnyakov, "Emission spectral tomography of multijet plasma flow," Proc. SPIE 2241, 90-98 (1994).
[CrossRef]

Tokmulin, I. M.

L. I. Poplevina, I. M. Tokmulin, and G. N. Vishnyakov, "Emission spectral tomography of multijet plasma flow," Proc. SPIE 2241, 90-98 (1994).
[CrossRef]

Vishnyakov, G. N.

L. I. Poplevina, I. M. Tokmulin, and G. N. Vishnyakov, "Emission spectral tomography of multijet plasma flow," Proc. SPIE 2241, 90-98 (1994).
[CrossRef]

Wan, X.

Wang, J.

J. Wang, Y.-P. Lu and Y.-F. Cai, "The application of volumetric region growing in segmentation for volume data from industrial computed tomography," Proc. SPIE 6041, 112-117 (2005).

Yang, F.

V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
[CrossRef]

Yi, J.

Yin, A.

Yu, S.

Yuta, S.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Proc. SPIE (5)

Y. Gao, X. D. He and Y. Gong, "Radon transform iteration based on beam-deflection optical tomography," Proc. SPIE 4221, 274-278 (2000).
[CrossRef]

L. I. Poplevina, I. M. Tokmulin, and G. N. Vishnyakov, "Emission spectral tomography of multijet plasma flow," Proc. SPIE 2241, 90-98 (1994).
[CrossRef]

J. Wang, Y.-P. Lu and Y.-F. Cai, "The application of volumetric region growing in segmentation for volume data from industrial computed tomography," Proc. SPIE 6041, 112-117 (2005).

J. S. Maltz, "Multiresolution constrained least-squares algorithm for direct estimation of time activity curves from dynamic ECT projection data, " Proc. SPIE 3979, 586-598 (2000).
[CrossRef]

V. Brost, S. Bouchoux, F. Yang, M. Paindavoine, and J. C. Grapin, "Real-time implementation of face tracking on DSP TMS320C6x embedded system," Proc. SPIE 4948, 701-706 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

An online EST system based on digital signal processor TMS320DM642

Fig. 2.
Fig. 2.

Relationship of emission coefficients with spectral intensity

Fig. 3.
Fig. 3.

DSP-based EST reconstruction circuit

Fig. 4.
Fig. 4.

Software flowchart of DSP-based reconstruction

Fig. 5.
Fig. 5.

Four local spectral intensity images (650 nm). (a) 0°, (b) 45°, (c) 90°, (d) 135°

Fig. 6.
Fig. 6.

Reconstructed three-dimensional distribution of emission coefficients of the candle flame

Tables (1)

Tables Icon

Table 1. Comparison of reconstruction time of VC++ software and DSP-based approach (SPDA-MCIR algorithm, iteration times=100, relaxation parameter=0.009)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x ' , ϕ , z , v ) = ε ( x , y , z , v ) d y '
I = W E + σ
E ( 0 ) = 1
E ( j ) ( k + 1 ) = R ( j ) ( k ) · E ( j ) ( k ) j = 1,2 , , M N .
R ( j ) ( k ) = 1 + γ [ 2 λ 1 ( k ) w i j I i W i E ( k ) ) 2 λ 2 ( k ) B ' i j E ( j ) ( k ) λ 3 ( k ) ( ln E ( j ) ( k ) + 1 ) ]
i = k ( mod d ) + 1

Metrics