Abstract

A modified Coherent 899–21 titanium sapphire laser is injection locked to produce 6–6.5W of single-frequency light at 852 nm. After closed-loop amplitude control and frequency stabilization to a high-finesse cavity, it delivers 4–4.5W with < 1kHz linewidth at the output of a single-mode fiber. The laser is tunable from about 700–1000nm; up to 8 W should be possible at 750–810nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. 1. U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, D. J.Wineland, "Optical frequency standards based on the Hg-199(+) ion," IEEE Trans. Instrumentat. Meas. 52, 245-249 (2003).
    [CrossRef]
  2. 2. E.A. Cummings, M.S. Hicken, and S.D. Bergeson, "Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser," Appl. Opt. 41, 7583-7587 (2002).
    [CrossRef]
  3. 3. Y. H. Cha, Y. W. Lee, K. H. Ko, E. C. Jung, G. Lim, J. Kim, T. S. Kim, and D. Y. Jeong, "Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser," Appl. Opt. 44, 7810-7813 (2005).
    [CrossRef] [PubMed]
  4. 4. Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, "External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser," Opt. Express 16, 4866-4871 (2008).
    [CrossRef] [PubMed]
  5. 5. K. Takase, J. K. Stockton, and M. A. Kasevich, "High-power pulsed-current-mode operation of an overdriven tapered amplifier," Opt. Lett. 32, 2617-2619 (2007).
    [CrossRef] [PubMed]
  6. 6. D. Haubrich and R. Wynands, "A modified commercial Ti:Sapphire laser with 4 kHz rms linewidth," Opt. Commun. 123, 558-562 (1996).
    [CrossRef]
  7. 7. H. M¨uller, S.-w. Chiow, Q. Long, C. Vo, and S. Chu, "Extended-cavity diode lasers with tracked resonances," Appl. Opt. 46, 7997-8001 (2007).
    [CrossRef] [PubMed]
  8. 8. We also tested removing the optical diode and the birefringent filter. We found, however, that this makes the laser exceedingly difficult to align and thus we achieve higher power with these elements in place.
  9. 9. CVI part No. PR1-850-90-0537; both the original and a tested 20% output coupler resulted in lower power.
  10. 10. T.W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
    [CrossRef]
  11. 11. It is important to limit the PZT volatge to below the maximum of 500V (using Z-diodes, for example).
  12. 12. Shorter than 1m, to avoid stimulated Brillouin scattering.
  13. 13. Increased pump power can increase the total power to a maximum of 7W, but also results in instable operation. Eventually, at more than 22W pump, the output power drops. We attribute this behavior to thermal lensing.
  14. 14. H. M¨uller, S.-w. Chiow, Q. Long, S. Herrmann, S. Chu, "Atom interferometry with up to 24-photon-momentumtransfer beam splitters," Phys. Rev. Lett. 100, 180405 (2008).
    [CrossRef] [PubMed]
  15. 15. J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
    [CrossRef]

Other

1. U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, D. J.Wineland, "Optical frequency standards based on the Hg-199(+) ion," IEEE Trans. Instrumentat. Meas. 52, 245-249 (2003).
[CrossRef]

2. E.A. Cummings, M.S. Hicken, and S.D. Bergeson, "Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser," Appl. Opt. 41, 7583-7587 (2002).
[CrossRef]

3. Y. H. Cha, Y. W. Lee, K. H. Ko, E. C. Jung, G. Lim, J. Kim, T. S. Kim, and D. Y. Jeong, "Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser," Appl. Opt. 44, 7810-7813 (2005).
[CrossRef] [PubMed]

4. Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, "External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser," Opt. Express 16, 4866-4871 (2008).
[CrossRef] [PubMed]

5. K. Takase, J. K. Stockton, and M. A. Kasevich, "High-power pulsed-current-mode operation of an overdriven tapered amplifier," Opt. Lett. 32, 2617-2619 (2007).
[CrossRef] [PubMed]

6. D. Haubrich and R. Wynands, "A modified commercial Ti:Sapphire laser with 4 kHz rms linewidth," Opt. Commun. 123, 558-562 (1996).
[CrossRef]

7. H. M¨uller, S.-w. Chiow, Q. Long, C. Vo, and S. Chu, "Extended-cavity diode lasers with tracked resonances," Appl. Opt. 46, 7997-8001 (2007).
[CrossRef] [PubMed]

8. We also tested removing the optical diode and the birefringent filter. We found, however, that this makes the laser exceedingly difficult to align and thus we achieve higher power with these elements in place.

9. CVI part No. PR1-850-90-0537; both the original and a tested 20% output coupler resulted in lower power.

10. T.W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

11. It is important to limit the PZT volatge to below the maximum of 500V (using Z-diodes, for example).

12. Shorter than 1m, to avoid stimulated Brillouin scattering.

13. Increased pump power can increase the total power to a maximum of 7W, but also results in instable operation. Eventually, at more than 22W pump, the output power drops. We attribute this behavior to thermal lensing.

14. H. M¨uller, S.-w. Chiow, Q. Long, S. Herrmann, S. Chu, "Atom interferometry with up to 24-photon-momentumtransfer beam splitters," Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

15. J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Setup.

Fig. 2.
Fig. 2.

Beat measurement between the fiber output and the transmission of the cavity. Left: Linear scale of the innermost 80 kHz to show linewidth. 1 kHz resolution. Right: 1 MHz scan shown with logarithmic scale in dB referred to carrier. 10 kHz resolution bandwidth.

Metrics