Abstract

In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007).
    [CrossRef]
  2. F. Pozzi, R. M. De La Rue, and M. Sorel, "Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser," IEEE Photon. Technol. Lett. 18, 2563-2565 (2006).
    [CrossRef]
  3. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
    [CrossRef]
  4. Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
    [CrossRef]
  5. H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
    [CrossRef]
  6. J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
    [CrossRef]
  7. W. K. Chan, J. Chung and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
    [CrossRef]
  8. H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
    [CrossRef]
  9. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
    [CrossRef] [PubMed]
  10. D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
    [CrossRef]
  11. Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).
  12. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
    [CrossRef] [PubMed]
  13. Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007).
    [CrossRef]
  14. Y. Dai and X. Chen, "DFB semiconductor lasers based on reconstruction equivalent chirp technology," Opt. Express. 15, 2348-2353 (2007).
    [CrossRef] [PubMed]
  15. I. P. Kaminow, "Optical Integrated Circuits: A Personal Perspective," J. Lightwave Technol. 26, 994-1004 (2008).
    [CrossRef]
  16. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
    [CrossRef]
  17. S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994).
    [CrossRef]
  18. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
    [CrossRef]

2008 (1)

2007 (5)

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
[CrossRef]

Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).

Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007).
[CrossRef]

Y. Dai and X. Chen, "DFB semiconductor lasers based on reconstruction equivalent chirp technology," Opt. Express. 15, 2348-2353 (2007).
[CrossRef] [PubMed]

X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007).
[CrossRef]

2006 (2)

F. Pozzi, R. M. De La Rue, and M. Sorel, "Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser," IEEE Photon. Technol. Lett. 18, 2563-2565 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
[CrossRef]

2004 (3)

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

1997 (1)

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

1995 (1)

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

1994 (2)

J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994).
[CrossRef]

1989 (1)

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

1988 (1)

W. K. Chan, J. Chung and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

Armistead, C. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Burkhard, H.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994).
[CrossRef]

Chan, W. K.

W. K. Chan, J. Chung and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

Chen, H.

X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007).
[CrossRef]

Chen, X.

Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).

Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007).
[CrossRef]

Y. Dai and X. Chen, "DFB semiconductor lasers based on reconstruction equivalent chirp technology," Opt. Express. 15, 2348-2353 (2007).
[CrossRef] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Chung, J.

W. K. Chan, J. Chung and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

Collar, A. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Contolini, R. J.

W. K. Chan, J. Chung and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

Dai, Y.

Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007).
[CrossRef]

Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).

Y. Dai and X. Chen, "DFB semiconductor lasers based on reconstruction equivalent chirp technology," Opt. Express. 15, 2348-2353 (2007).
[CrossRef] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

De La Rue, R. M.

F. Pozzi, R. M. De La Rue, and M. Sorel, "Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser," IEEE Photon. Technol. Lett. 18, 2563-2565 (2006).
[CrossRef]

Fan, C.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
[CrossRef]

Funabashi, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Grabmaier, A.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

Hansmann, S.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994).
[CrossRef]

Hillmer, H.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994).
[CrossRef]

Hong, J.

J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Huang, W. P.

J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Itaya, Y.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Ji, H.

Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007).
[CrossRef]

Jia, X.

X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007).
[CrossRef]

Jiang, D.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
[CrossRef]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Kaminow, I. P.

Kasukawa, A.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Kimoto, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Kise, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Liu, H.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Liu, Y.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
[CrossRef]

Magari, K.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

Makino, T.

J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Mukaihara, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Nasu, H.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Nomura, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Oike, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Otsuji, T.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Pakulski, G.

J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Penty, V.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
[CrossRef]

Plumb, D. R.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
[CrossRef]

Pozzi, F.

F. Pozzi, R. M. De La Rue, and M. Sorel, "Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser," IEEE Photon. Technol. Lett. 18, 2563-2565 (2006).
[CrossRef]

Sano, A.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Sato, K.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Shinagawa, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Sorel, M.

F. Pozzi, R. M. De La Rue, and M. Sorel, "Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser," IEEE Photon. Technol. Lett. 18, 2563-2565 (2006).
[CrossRef]

Sun, J.

Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

Takagi, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Takaki, K.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Takeuchi, H.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Thompson, G. H. B.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Tsuzuki, K.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Walter, H.

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994).
[CrossRef]

Wang, F.

X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007).
[CrossRef]

White, I. H.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
[CrossRef]

White, J. K.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
[CrossRef]

Whiteaway, J. E. A.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Xia, L.

Xie, S.

Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007).
[CrossRef]

Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Yamamoto, M.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Yao, Y.

Yoneyama, M.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

Zhang, Y.

Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

Zhong, D.

X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007).
[CrossRef]

Zhu, H. L.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

Appl. Opt. (1)

W. K. Chan, J. Chung and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

IEE Proc. Optoelectron. (1)

J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994).
[CrossRef]

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (4)

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995).
[CrossRef]

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004).
[CrossRef]

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005).
[CrossRef]

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

F. Pozzi, R. M. De La Rue, and M. Sorel, "Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser," IEEE Photon. Technol. Lett. 18, 2563-2565 (2006).
[CrossRef]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007).
[CrossRef]

Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007).
[CrossRef]

J. Lightwave Technol. (1)

OFC (1)

Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).

Opt. Commun. (1)

X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007).
[CrossRef]

Opt. Express. (1)

Y. Dai and X. Chen, "DFB semiconductor lasers based on reconstruction equivalent chirp technology," Opt. Express. 15, 2348-2353 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of the SEM morphology of: (a) sampled grating with a quarter-wave equivalent phase shift; (b) uniform Bragg gratings in a sampling period.

Fig. 2.
Fig. 2.

Typical laser spectrum of the REC based DFB laser at the injection current of 40mA.

Fig. 3.
Fig. 3.

(a). Light-current characteristic of the REC based DFB laser; (b) lasing wavelengths at different injection currents (above threshold) and temperatures.

Fig. 4.
Fig. 4.

Typical laser spectra at the injection currents of 27mA (a) and 100mA (b).

Fig. 5.
Fig. 5.

Typical laser spectra of the REC based DFB laser in a wide wavelength range at the injection currents of 70mA (a) and 140mA (b).

Fig. 6.
Fig. 6.

REC based DFB semiconductor laser with a different wavelength in a different part of the same chip at the injection current of 20mA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( z ) = s ( z ) exp ( j 2 πz Λ ) + c . c
s ( z ) = m F m exp ( j 2 mπz P )
Δ n m ( z ) = { F m exp ( j 2 πz Λ + j 2 mπz P ) z z 0 F m exp ( j 2 πz Λ + j 2 mπz P ) z > z 0
θ = 2 Δ P P

Metrics