Abstract

SOI CMOS compatible Si waveguide photodetectors are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. Photodiodes have a bandwidth of >35 GHz, an internal quantum efficiency of 0.5 to 10 AW-1, and leakage currents of 0.5 nA to 0.5 μA. Phototransistors have an optical response of 50 AW-1 with a bandwidth of 0.2 GHz. These properties are related to carrier mobilities in the implanted Si waveguide. These detectors exhibit low optical absorption requiring lengths from <0.3 mm to 3 mm to absorb 50% of the incoming light. However, the high bandwidth, high quantum efficiency, low leakage current, and potentially high fabrication yields, make these devices very competitive when compared to other detector technologies.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak1, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007).
    [CrossRef] [PubMed]
  2. L. Chen, P. Dong, and M. Lipson., "High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding," Opt. Express 16, 11513-11518 (2008).
    [CrossRef] [PubMed]
  3. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, "31GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate," Opt. Express 15, 13965-13971 (2007).
    [CrossRef] [PubMed]
  4. D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, "High performance waveguide integrated Ge photodetectors," Opt. Express 15, 3916-3921 (2007).
    [CrossRef] [PubMed]
  5. M. Kim, O. O. Olubuyide, J. U. Yoon, and J. L. Hoyt, "Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications," ECS Transactions 16, 837-847 (2008).
    [CrossRef]
  6. S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, "Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection," Appl. Phys. Lett. 93, 071108 (2008).
    [CrossRef]
  7. F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
    [CrossRef]
  8. A. Knights, A. House, R. MacNaughton, and F. Hopper, "Optical power monitoring function compatible with single chip integration on silicon-on-insulator," Conference on Optical Fiber Communication, Technical Digest Series 86, 705-706 (2003).
  9. Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006).
    [CrossRef]
  10. M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
    [CrossRef]
  11. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "All silicon infrared photodiodes: photo response and effects of processing temperature," Opt. Express 15, 16886-16895 (2007).
    [CrossRef] [PubMed]
  12. H.Y. Fan and A. K. Ramdas, "Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
    [CrossRef]
  13. A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006).
    [CrossRef]
  14. S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
    [CrossRef]
  15. T. Baehr-Jones, M. Hochberg, and A. Scherer, "Photodetection in silicon beyond the band edge with surface states," Opt. Express 16,1659-1668 (2008).
    [CrossRef] [PubMed]
  16. K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetectors," IEEE Photon. Technol. Lett. 4, 1363-1365 (1992).
    [CrossRef]
  17. S. J. Spector, M. W. Geis, G.-R. Zhou, M. E. Grein, F. Gan, M.A. Popovi, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. X. Kärtner and T. M. Lyszczarz, "CMOS-compatible dual-output silicon modulator for analog signal processing," Opt. Express 16, 11027-11031 (2008).
    [CrossRef] [PubMed]
  18. A. Rose, "Performance of photoconductors," Pro.IRE 43, 1850-1869 (1955).
    [CrossRef]
  19. H Benenking, "Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices," IEEE Trans Elec. Dev. ED-29, 1420-1431 (1982).
    [CrossRef]
  20. S. M. Sze, " MOSFET" in Physics of Semiconductor Devices, second edition, (John Wiley & Sons, 1981) Chapter 8, pp. 438-446.
  21. K. V. Madhu, S. R. Kulkarni. M. Ravindra, and R. R. Damle, "Analysis of generation and annihilation of deep level defects in a silicon-irradiated bipolar junction transistor," Semicond. Sci. Technol. 22,963-969 (2007).
    [CrossRef]
  22. S. M. Sze, "Bipolar Transistors" in Physics of Semiconductor Devices, second edition, (John Wiley & Sons, 1981) Chapter 3, pp. 133-147.
  23. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  24. P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
    [CrossRef]
  25. M. E. Grein, private communicaton.
  26. D. A. Tulchinsky, J. B. Boos, D. Park, P. G. Goetz, W. S. Rabinovich, and K. J. Williams, "High-current photodetectors as efficient, linear, and high-power RF output stages," J. Lightwave Technol. 26, 408-416 (2008).
    [CrossRef]

2009 (1)

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

2008 (6)

2007 (6)

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

K. V. Madhu, S. R. Kulkarni. M. Ravindra, and R. R. Damle, "Analysis of generation and annihilation of deep level defects in a silicon-irradiated bipolar junction transistor," Semicond. Sci. Technol. 22,963-969 (2007).
[CrossRef]

D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, "High performance waveguide integrated Ge photodetectors," Opt. Express 15, 3916-3921 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak1, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007).
[CrossRef] [PubMed]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, "31GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate," Opt. Express 15, 13965-13971 (2007).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "All silicon infrared photodiodes: photo response and effects of processing temperature," Opt. Express 15, 16886-16895 (2007).
[CrossRef] [PubMed]

2006 (2)

A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006).
[CrossRef]

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

2002 (1)

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

1999 (1)

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

1992 (1)

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetectors," IEEE Photon. Technol. Lett. 4, 1363-1365 (1992).
[CrossRef]

1982 (1)

H Benenking, "Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices," IEEE Trans Elec. Dev. ED-29, 1420-1431 (1982).
[CrossRef]

1959 (1)

H.Y. Fan and A. K. Ramdas, "Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

1955 (1)

A. Rose, "Performance of photoconductors," Pro.IRE 43, 1850-1869 (1955).
[CrossRef]

Ahn, D.

Baehr-Jones, T.

Beals, M.

Benenking, H

H Benenking, "Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices," IEEE Trans Elec. Dev. ED-29, 1420-1431 (1982).
[CrossRef]

Benton, J. L.

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Boos, J. B.

Bowers, J. E.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetectors," IEEE Photon. Technol. Lett. 4, 1363-1365 (1992).
[CrossRef]

Bradley, J. D.

A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006).
[CrossRef]

Chen, J.

Chen, L.

Chetrit, Y.

Cheung, W. Y.

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

Chow, C. W.

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

Coffa, S.

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Cohen, O.

Cohen, R.

Denault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Dong, P.

Eaglesham, D. J.

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Fan, H.Y.

H.Y. Fan and A. K. Ramdas, "Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

Fang, A. W.

Far, M. M.

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

Gan, F.

Geis, M. W.

Giboney, K. S.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetectors," IEEE Photon. Technol. Lett. 4, 1363-1365 (1992).
[CrossRef]

Giziewicz, W.

Goetz, P. G.

Gou, S.H.

A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006).
[CrossRef]

Grein, M. E.

Halliburton, K.

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Hochberg, M.

Hong, C.

Hoyt, J. L.

M. Kim, O. O. Olubuyide, J. U. Yoon, and J. L. Hoyt, "Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications," ECS Transactions 16, 837-847 (2008).
[CrossRef]

Ippen, E. P.

Jessop, P. E.

A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006).
[CrossRef]

Jessop, P.E.

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

Jones, R.

Kärtner, F. X.

Kim, M.

M. Kim, O. O. Olubuyide, J. U. Yoon, and J. L. Hoyt, "Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications," ECS Transactions 16, 837-847 (2008).
[CrossRef]

Kimerling, L. C.

Knights, A. P.

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

Knights, A.P.

A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006).
[CrossRef]

Kulkarni, S. R.

K. V. Madhu, S. R. Kulkarni. M. Ravindra, and R. R. Damle, "Analysis of generation and annihilation of deep level defects in a silicon-irradiated bipolar junction transistor," Semicond. Sci. Technol. 22,963-969 (2007).
[CrossRef]

Kwong, D. L.

S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, "Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection," Appl. Phys. Lett. 93, 071108 (2008).
[CrossRef]

Lennon, D. M.

Libertino, S.

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Lipson, M.

Liu, J.

Liu, Y.

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

Lo, G. Q.

S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, "Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection," Appl. Phys. Lett. 93, 071108 (2008).
[CrossRef]

Lyszczarz, T. M.

Madhu, K. V.

K. V. Madhu, S. R. Kulkarni. M. Ravindra, and R. R. Damle, "Analysis of generation and annihilation of deep level defects in a silicon-irradiated bipolar junction transistor," Semicond. Sci. Technol. 22,963-969 (2007).
[CrossRef]

McFaul, S. M.

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

Michel, J.

Morse, M. M.

Olubuyide, O. O.

M. Kim, O. O. Olubuyide, J. U. Yoon, and J. L. Hoyt, "Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications," ECS Transactions 16, 837-847 (2008).
[CrossRef]

Palmacci, S. T.

Paniccia, M. J.

Park, D.

Park, H.

Popovi, M.A.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Rabinovich, W. S.

Raday, O.

Raissi, F.

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

Ramdas, A. K.

H.Y. Fan and A. K. Ramdas, "Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

Rodwell, M. J. W.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetectors," IEEE Photon. Technol. Lett. 4, 1363-1365 (1992).
[CrossRef]

Rose, A.

A. Rose, "Performance of photoconductors," Pro.IRE 43, 1850-1869 (1955).
[CrossRef]

Rowe, L. K.

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

Rubin, D.

Sarid, G.

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Schulein, R. T.

Schulein, R.T.

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Spector, S. J.

Sysak, M. N.

Tam, A.

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

Tarr, N. G.

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

Tsang, H. K.

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

Tulchinsky, D. A.

Williams, K. J.

Wynn, C. M.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Yin, T.

Yoon, J. U.

M. Kim, O. O. Olubuyide, J. U. Yoon, and J. L. Hoyt, "Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications," ECS Transactions 16, 837-847 (2008).
[CrossRef]

S. J. Spector, M. W. Geis, G.-R. Zhou, M. E. Grein, F. Gan, M.A. Popovi, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. X. Kärtner and T. M. Lyszczarz, "CMOS-compatible dual-output silicon modulator for analog signal processing," Opt. Express 16, 11027-11031 (2008).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "All silicon infrared photodiodes: photo response and effects of processing temperature," Opt. Express 15, 16886-16895 (2007).
[CrossRef] [PubMed]

Yu, M. B.

S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, "Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection," Appl. Phys. Lett. 93, 071108 (2008).
[CrossRef]

Zhou, G.-R.

Zhu, S.

S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, "Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection," Appl. Phys. Lett. 93, 071108 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, "Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection," Appl. Phys. Lett. 93, 071108 (2008).
[CrossRef]

ECS Transactions (1)

M. Kim, O. O. Olubuyide, J. U. Yoon, and J. L. Hoyt, "Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications," ECS Transactions 16, 837-847 (2008).
[CrossRef]

IEEE Photon Technol. Lett. (1)

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetectors," IEEE Photon. Technol. Lett. 4, 1363-1365 (1992).
[CrossRef]

IEEE Sensors J. (1)

F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002).
[CrossRef]

IEEE Trans Elec. Dev. (1)

H Benenking, "Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices," IEEE Trans Elec. Dev. ED-29, 1420-1431 (1982).
[CrossRef]

IRE (1)

A. Rose, "Performance of photoconductors," Pro.IRE 43, 1850-1869 (1955).
[CrossRef]

J. Appl. Phys. (1)

H.Y. Fan and A. K. Ramdas, "Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater Sci.: Meter. Electron. (1)

P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009).,
[CrossRef]

J. Vac. Sci. Technol. A (1)

A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Nucl. Instrum. Methods B (1)

S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999).
[CrossRef]

Opt. Express (7)

T. Baehr-Jones, M. Hochberg, and A. Scherer, "Photodetection in silicon beyond the band edge with surface states," Opt. Express 16,1659-1668 (2008).
[CrossRef] [PubMed]

S. J. Spector, M. W. Geis, G.-R. Zhou, M. E. Grein, F. Gan, M.A. Popovi, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. X. Kärtner and T. M. Lyszczarz, "CMOS-compatible dual-output silicon modulator for analog signal processing," Opt. Express 16, 11027-11031 (2008).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "All silicon infrared photodiodes: photo response and effects of processing temperature," Opt. Express 15, 16886-16895 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak1, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007).
[CrossRef] [PubMed]

L. Chen, P. Dong, and M. Lipson., "High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding," Opt. Express 16, 11513-11518 (2008).
[CrossRef] [PubMed]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, "31GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate," Opt. Express 15, 13965-13971 (2007).
[CrossRef] [PubMed]

D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, "High performance waveguide integrated Ge photodetectors," Opt. Express 15, 3916-3921 (2007).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

K. V. Madhu, S. R. Kulkarni. M. Ravindra, and R. R. Damle, "Analysis of generation and annihilation of deep level defects in a silicon-irradiated bipolar junction transistor," Semicond. Sci. Technol. 22,963-969 (2007).
[CrossRef]

Other (4)

S. M. Sze, "Bipolar Transistors" in Physics of Semiconductor Devices, second edition, (John Wiley & Sons, 1981) Chapter 3, pp. 133-147.

S. M. Sze, " MOSFET" in Physics of Semiconductor Devices, second edition, (John Wiley & Sons, 1981) Chapter 8, pp. 438-446.

M. E. Grein, private communicaton.

A. Knights, A. House, R. MacNaughton, and F. Hopper, "Optical power monitoring function compatible with single chip integration on silicon-on-insulator," Conference on Optical Fiber Communication, Technical Digest Series 86, 705-706 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a). To-scale schematic cross section of a Si waveguide detector. The wings were doped one p-type and the other n-type for pin photodiodes or both wings n or p for nin or pip phototransistors. (b) Schematic cross section of the waveguide portion of the Si waveguide detector. For the waveguide detectors two geometries were fabricated. In structure-A y = 50 nm and x = 200 nm, and in structure-B y = 70 nm x = 0. (c) Top view micrograph of 0.25-mm-long Si photodetector. Detectors were fabricated with lengths from 100 μm to 3 mm.

Fig. 2.
Fig. 2.

Photocurrent from a reversed biased 100-μm-long structure-B photodiode implanted with 1013 cm-2 190 keV Si+. Upon first testing the photodiode exhibits a reduced response, black curve. After all subsequent testing the diode exhibits the consistent photo response of the L1 state, blue curve. After activation by forward biasing, 50 mA for 1 min, the diode is in the L2 state and has an enhanced photo response, red curve.

Fig. 3.
Fig. 3.

Calculated maximum 3 dB RF power bandwidth as limited by light propagation time though the waveguide photodetector as a function of the fraction of the light absorbed for several optical absorption coefficients. An optical group velocity of 7.5×109 cm s-1 was assumed for these calculated results.

Fig. 4.
Fig. 4.

Frequency response of the measurement system with a 100-μm-long waveguide Si photodiode and the commercial InGaAs photodiode reference. Both curves were set to 0 dB at 1 GHz. The commercial diode has a bandwidth >50 GHz. The response decreases with frequency as a result of the limited bandwidth of the LiNbO3 Mach-Zehnder modulator and cabling losses.

Fig. 5.
Fig. 5.

Measured frequency response of a 100-μm-long waveguide Si photodiode using the difference between a high bandwidth reference diode and the Si diode. The data for both diodes individually is shown in Fig. 4. The increase in response between 40 and 50 GHz is believed to result from RF probes used to contact the Si diode, which are rated to 40 GHz.

Fig. 6.
Fig. 6.

Internal quantum efficiency, the ratio of photocurrent to light absorbed, in 3-mm-long structure-A photodiodes for devices implanted with Si+ to 1013 and 1014 cm-2 in the L1 and L2 states. Diodes implanted to 1×1014 cm-2 exhibit no measureable change in the photo response after forward biasing. The L2 state initially has a lower bandwidth <10 GHz at 20 V due to excessive avalanching, however after a few minutes of operation at 20 V the internal quantum efficiency changes from ~20 to 10 AW-1 and the bandwidth increases to >35 GHz. To convert from AW-1 to e/photon at 1550 nm multiply by 0.8.

Fig. 7.
Fig. 7.

Measured photocurrent of structure-B detectors. All the devices are 1 mm long and have been implanted at 1013 cm-2. Approximately the same optical power is transmitted into each device. The dashed curves are the leakage currents for the same devices in the dark. For the phototransistors the Si carrier wafer is biased to reduce the dark leakage current, -60 V for the nin and 60 V for the pip.

Fig. 8.
Fig. 8.

Frequency response of a structure-B Si detectors, a nin phototransistor biased at 0.1 and 5 V and a pin photodiode in the L2 state biased to 10 V. The devices were implanted at 1013 cm2.

Fig. 9.
Fig. 9.

Photocurrent through nin and pip structure-A phototransistors implanted with 190 keV Si+ at 1014 cm-2 when illuminated with ~1 mW of 1550 nm radiation. The dashed curves are for the same devices in the dark, leakage current. The Si substrate bias is 0 V for nin and pip transistors.

Fig. 10.
Fig. 10.

Measured electron, continuous lines, and hole, dashed lines, mobilities on the Si lower-substrate SiO2 interface. The flat band voltage for the unimplanted Si wave guide was -11 V, for the devices implanted 1~1013, 1.2 V and for devices implanted to 1014 cm-2, 1.1V.

Fig. 11.
Fig. 11.

Schematic drawing of a digital optical modulator with feedback stabilization of the operating point. The illustration, which is not drawn to scale, shows a Si-ring modulator with an integrated heater that is used to set the operating point of the modulator. Two nin phototransistors monitor the output light level and drive the heater circuit to maintain the resonator in its active region of operation. Two additional diodes, fabricated as part of the ring resonator, are connected to the digital input signal and provide high speed modulation of the light by varying the carrier density in the ring.

Tables (1)

Tables Icon

Table 1. List of the properties of structure-A pin diodes and nin and pip phototransistors. These measurements were made with ~1550 nm radiation. For 1550 nm radiation the quantum efficiency in e/photon = 0.8 (AW-1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( ω ) P ( 0 ) = v 2 α 2 F 2 ( ω 2 + v 2 α 2 ) [ 1 2 ( 1 F ) Cos [ w In ( 1 F ) ] + ( 1 F ) 2 ]
μ = L Si L Si O 2 ε ε 0 V Si L L d I Si d V Sub

Metrics