Abstract

We report on a significant improvement of the total bandwidth amplified in an optical parametric process. By pumping a parametric amplifier with a broadband pump, we demonstrate amplification of a supercontinuum whose spectrum expands over nearly an octave ranging from less than 600 nm up to 1200 nm. Our amplifier stage is set to provide amplification at degeneracy in the quasi-collinear configuration with a temporally as well as angularly dispersed pump.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
    [CrossRef]
  2. G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
    [CrossRef]
  3. G. McConnell, "Confocal laser scanning fluorescence microscopy with a visible continuum source," Opt. Express 12, 2844-2850 (2004).
    [CrossRef] [PubMed]
  4. T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tünnermann, "High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier," Opt. Express 14, 4765-4773 (2006).
    [CrossRef] [PubMed]
  5. J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, E. Cormier, and F. Salin, "Ultra-broad bandwidth parametric amplification at degeneracy," Opt. Express 13, 7386-7392 (2005).
    [CrossRef] [PubMed]
  6. Baltuska and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
    [CrossRef]
  7. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification," Appl. Phys. Lett. 74, 2268-2270 (1999).
    [CrossRef]
  8. G. Arisholm, J. Biegert, P. Schlup, C. P. Hauri, and U. Keller, "Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams," Opt. Express 12, 518-530 (2004).
    [CrossRef] [PubMed]
  9. J. Möhring, T. Buckup, B. von Vacano, and M. Motzkus, "Parametrically amplified ultrashort pulses from a shaped photonic crystal fiber supercontinuum," Opt. Lett. 33, 186-188 (2008).
    [CrossRef] [PubMed]
  10. SNLO is a software package for simulating wave mixing available from AS-Photonics, LLC., ">http://www.as-photonics.com/?q=SNLO.
  11. K. Yamane, T. Tanigawa, T. Sekikawa, and M. Yamashita, "Angularly-dispersed optical parametric amplification of optical pulses with one-octave bandwidth toward monocycle regime," Opt. Express 16, 18345-18353 (2008), >http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-22-18345.
    [CrossRef] [PubMed]
  12. D. N. Schimpf, J. Rothhardt, J. Limpert, A. Tünnermann, and D. C. Hanna, "Theoretical analysis of the gain bandwidth for noncollinear parametric amplification of ultrafast pulses," J. Opt. Soc. Am. B 24, 2837-2846 (2007).
    [CrossRef]
  13. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677-684 (2007).
    [CrossRef]
  14. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
    [CrossRef]
  15. J. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004).
    [CrossRef] [PubMed]

2008

2007

D. N. Schimpf, J. Rothhardt, J. Limpert, A. Tünnermann, and D. C. Hanna, "Theoretical analysis of the gain bandwidth for noncollinear parametric amplification of ultrafast pulses," J. Opt. Soc. Am. B 24, 2837-2846 (2007).
[CrossRef]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677-684 (2007).
[CrossRef]

2006

2005

2004

2003

G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

2002

Baltuska and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

1999

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification," Appl. Phys. Lett. 74, 2268-2270 (1999).
[CrossRef]

1997

N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Aguergaray, C.

Andersen, T. V.

Arisholm, G.

Biegert, J.

Bruchmann, C.

Buckup, T.

Cerullo, G.

G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Coen, S.

Collier, J. L.

N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Cormier, E.

Dudley, J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
[CrossRef]

Eikema, K. S. E.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677-684 (2007).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
[CrossRef]

Hanna, D. C.

Hauri, C. P.

Hogervorst, W.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677-684 (2007).
[CrossRef]

Keller, U.

Langley, A. J.

N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Limpert, J.

Manek-Hönninger, I.

Matousek, P.

N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

McConnell, G.

Möhring, J.

Montant, S.

Motzkus, M.

Ross, N.

N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Rothhardt, J.

Salin, F.

Schimpf, D. N.

Schlup, P.

Schmidt, O.

Sekikawa, T.

Shirakawa,

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification," Appl. Phys. Lett. 74, 2268-2270 (1999).
[CrossRef]

Silvestri, S.

G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Tanigawa, T.

Towrie, M.

N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Tünnermann, A.

von Vacano, B.

Witte, S.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677-684 (2007).
[CrossRef]

Yamane, K.

Yamashita, M.

Zinkstok, R. T.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677-684 (2007).
[CrossRef]

Appl. Phys. B

Baltuska and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677-684 (2007).
[CrossRef]

Appl. Phys. Lett.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification," Appl. Phys. Lett. 74, 2268-2270 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
[CrossRef]

Rev. Sci. Instrum.

G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Other

SNLO is a software package for simulating wave mixing available from AS-Photonics, LLC., ">http://www.as-photonics.com/?q=SNLO.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Phase matching curves at degeneracy in a type 1 BBO crystal for th e extreme pump wavelengths (10 nm bandwidth) either collimated (dark grey) or angularly dispersed (light grey).

Fig. 2.
Fig. 2.

(a) Spectral density distribution of pump beam. (b) Associated theoretical gain profile.

Fig. 3.
Fig. 3.

Parametric amplification of two signal components at 800 and 1000 nm. ZNL 1 and ZNL 2 are the maximum conversion distance. zexp is the experimental interaction length.

Fig. 4.
Fig. 4.

(a) Spectral density distribution of pump beam. (b) Associated theoretical gain profile.

Fig. 5.
Fig. 5.

(a) Spectral density distribution of pump beam. (b) Associated theoretical gain profile.

Fig. 6
Fig. 6

Theoretical gain curves for three different interaction length accounting for the pump and the signal input spectral densities.

Fig. 7.
Fig. 7.

Second harmonic spectrum with a 300 μm thick crystal.

Fig. 8.
Fig. 8.

Spectrogram of SC created by coupling 5 nJ into in PCF.

Fig. 9.
Fig. 9.

Geometry of the OPCPA stage, where given angles are internal to the crystal value. B.S. : 4 % reflection beam splitter, P.C. : Polarizer cube, PCF : Photonic crystal fiber, ZDW : Zero dispersion wavelength

Fig. 10.
Fig. 10.

(a) Measured spectra of the signal before amplification (black) and after amplification (red). Also shown are amplified spectra with spectral fractions of the pump beam. (b) Experimental (red) and theoretical (blue) gain calculated for an interaction distance of 3 mm. (Green) Evolution of ZNL with signal wavelength. (Black) Experimental interaction length zexp.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ A i z = i ω i · d eff n i · c · A s * · A p · e i · Δ k · z A s z = i ω s · d eff n s · c · A i * · A p · e i · Δ k · z A p z = i ω p · d eff n p · c · A i · A s · e i · Δ k · z

Metrics