Abstract

We have investigated low-current operation characteristics of a passively aligned VCSEL transmitter driven at fixed “on” and “off” current over a wide temperature range. GaAs/AlGaAs-based 850-nm oxide VCSELs with the minimum threshold current of 0.79 mA at 50 °C and small temperature dependence of the threshold current, d 2 Ith/dT 2, as low as 0.114 μA/C2 have been fabricated and used for the transmitter module. The superior temperature characteristics enable fixed-current operation of the VCSEL transmitter that complies with Gigabit Ethernet standard over a wide temperature range from -20 to 120 °C. This result paves the way to a VCSEL transmitter featured by low-power consumption, low-cost with a simple driving circuit and passive alignment, and a wide operation temperature range.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppressing the turn-off-induced pulsations in VCSELs using an elevated oxide-layer structure

Taeyong Kim and Sang-Bae Kim
Opt. Express 18(2) 1271-1277 (2010)

Power-efficient dual-rate optical transceiver

Yongrong Zuo, Fouad E. Kiamiley, Xiaoqing Wang, Ping Gui, Jeremy Ekman, Xingle Wang, Michael J. McFadden, and Michael W. Haney
Appl. Opt. 44(33) 7112-7124 (2005)

22-Gb/s Long Wavelength VCSELs

Werner Hofmann, Michael Müller, Alexey Nadtochiy, Christian Meltzer, Alex Mutig, Gerhard Böhm, Jürgen Rosskopf, Dieter Bimberg, Markus-Christian Amann, and Connie Chang-Hasnain
Opt. Express 17(20) 17547-17554 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
    [Crossref]
  2. B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
    [Crossref]
  3. Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
    [Crossref]
  4. Y. Wei, J. S. Gustavsson, M. Sadeghi, S. Wang, and A. Larsson, “Uncooled 2.5 Gb/s operation of 1.3 μm GalnNAs DQW lasers over a wide temperature range,” Opt. Express,  14, 2753–2759 (2006).
    [Crossref] [PubMed]
  5. L. Zei, K. Petermann, R. Jager, and K. J. Ebeling, “Operation range of VCSEL-interconnect links with below-threshold biasing,” J. Lightw. Technol,  18, 477–481 (2000).
    [Crossref]
  6. A. Valle, J. Sarma, and K. A. Shore, “Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers,” J. Optic. Soc. Amer., B: Optics. Phys.,  12, 1741–1746 (1995).
    [Crossref]
  7. M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
    [Crossref]
  8. P. V. Mena, S. M. Kang, and T. A. DeTemple, “Rate-equation-based laser models with a single solution regime,” J. Lightw. Technol,  15, 717–730 (1997).
    [Crossref]
  9. K. Petermann, Laser diode modulation and noise. Dordrecht, the Netherlands: Kluwer Academic (1991). Gigabit data communication standards internet links. [Online]. Available: http://standards.ieee.org/getieee802/download/802.3-2005section3.pdf

2006 (3)

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Y. Wei, J. S. Gustavsson, M. Sadeghi, S. Wang, and A. Larsson, “Uncooled 2.5 Gb/s operation of 1.3 μm GalnNAs DQW lasers over a wide temperature range,” Opt. Express,  14, 2753–2759 (2006).
[Crossref] [PubMed]

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
[Crossref]

2000 (1)

L. Zei, K. Petermann, R. Jager, and K. J. Ebeling, “Operation range of VCSEL-interconnect links with below-threshold biasing,” J. Lightw. Technol,  18, 477–481 (2000).
[Crossref]

1997 (1)

P. V. Mena, S. M. Kang, and T. A. DeTemple, “Rate-equation-based laser models with a single solution regime,” J. Lightw. Technol,  15, 717–730 (1997).
[Crossref]

1995 (2)

A. Valle, J. Sarma, and K. A. Shore, “Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers,” J. Optic. Soc. Amer., B: Optics. Phys.,  12, 1741–1746 (1995).
[Crossref]

M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
[Crossref]

1992 (1)

B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
[Crossref]

Agresti, M.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Allerman, A. A.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
[Crossref]

Beaz, F. M.

B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
[Crossref]

Bertone, D.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Bianco, L.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Brown-Goebeler, F.

B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
[Crossref]

Bruschi, C.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Buccieri, A.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Campi, R.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Chen, C.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
[Crossref]

Choquette, K. D.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
[Crossref]

Deng, J. S.

M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
[Crossref]

DeTemple, T. A.

P. V. Mena, S. M. Kang, and T. A. DeTemple, “Rate-equation-based laser models with a single solution regime,” J. Lightw. Technol,  15, 717–730 (1997).
[Crossref]

Dorigoni, C.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Ebeling, K. J.

L. Zei, K. Petermann, R. Jager, and K. J. Ebeling, “Operation range of VCSEL-interconnect links with below-threshold biasing,” J. Lightw. Technol,  18, 477–481 (2000).
[Crossref]

Geib, K. M.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
[Crossref]

Gotta, P.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Gustavsson, J. S.

Jager, R.

L. Zei, K. Petermann, R. Jager, and K. J. Ebeling, “Operation range of VCSEL-interconnect links with below-threshold biasing,” J. Lightw. Technol,  18, 477–481 (2000).
[Crossref]

Jou, M. J.

M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
[Crossref]

Juang, C.

M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
[Crossref]

Kang, S. M.

P. V. Mena, S. M. Kang, and T. A. DeTemple, “Rate-equation-based laser models with a single solution regime,” J. Lightw. Technol,  15, 717–730 (1997).
[Crossref]

Larsson, A.

Lee, B. J.

M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
[Crossref]

Lee, Y. H.

B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
[Crossref]

Leibenguth, R. E.

B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
[Crossref]

Leisher, P. O.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
[Crossref]

Liotti, M.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Lu, M. F.

M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
[Crossref]

Magnetti, G.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Meliga, M.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Mena, P. V.

P. V. Mena, S. M. Kang, and T. A. DeTemple, “Rate-equation-based laser models with a single solution regime,” J. Lightw. Technol,  15, 717–730 (1997).
[Crossref]

Montangero, P.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Morrello, G.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Petermann, K.

L. Zei, K. Petermann, R. Jager, and K. J. Ebeling, “Operation range of VCSEL-interconnect links with below-threshold biasing,” J. Lightw. Technol,  18, 477–481 (2000).
[Crossref]

K. Petermann, Laser diode modulation and noise. Dordrecht, the Netherlands: Kluwer Academic (1991). Gigabit data communication standards internet links. [Online]. Available: http://standards.ieee.org/getieee802/download/802.3-2005section3.pdf

R., Paoletti

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Rigo, C.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Riva, E.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Sadeghi, M.

Sarma, J.

A. Valle, J. Sarma, and K. A. Shore, “Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers,” J. Optic. Soc. Amer., B: Optics. Phys.,  12, 1741–1746 (1995).
[Crossref]

Shore, K. A.

A. Valle, J. Sarma, and K. A. Shore, “Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers,” J. Optic. Soc. Amer., B: Optics. Phys.,  12, 1741–1746 (1995).
[Crossref]

Soderstrom, D.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Stano, A.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Tell, B.

B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
[Crossref]

Valenti, P.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Valle, A.

A. Valle, J. Sarma, and K. A. Shore, “Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers,” J. Optic. Soc. Amer., B: Optics. Phys.,  12, 1741–1746 (1995).
[Crossref]

Vallone, M.

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

Wang, S.

Wei, Y.

Zei, L.

L. Zei, K. Petermann, R. Jager, and K. J. Ebeling, “Operation range of VCSEL-interconnect links with below-threshold biasing,” J. Lightw. Technol,  18, 477–481 (2000).
[Crossref]

Appl. Phys. Lett. (1)

B. Tell, F. Brown-Goebeler, R. E. Leibenguth, F. M. Beaz, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett.,  60, 683–685 (1992).
[Crossref]

IEEE J. Quantum Electron. (2)

M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron.,  31,1418–1422 (1995).
[Crossref]

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, “Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,  42, 1078–1083 (2006).
[Crossref]

J. Lightw. Technol (2)

P. V. Mena, S. M. Kang, and T. A. DeTemple, “Rate-equation-based laser models with a single solution regime,” J. Lightw. Technol,  15, 717–730 (1997).
[Crossref]

L. Zei, K. Petermann, R. Jager, and K. J. Ebeling, “Operation range of VCSEL-interconnect links with below-threshold biasing,” J. Lightw. Technol,  18, 477–481 (2000).
[Crossref]

J. Lightw. Technol. (1)

Paoletti R., M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morrello, C. Rigo, E. Riva, D. Soderstrom, A. Stano, P. Valenti, M. Vallone, and M. Meliga, “Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing,” J. Lightw. Technol.,  24, 143–149 (2006).
[Crossref]

J. Optic. Soc. Amer., B: Optics. Phys. (1)

A. Valle, J. Sarma, and K. A. Shore, “Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers,” J. Optic. Soc. Amer., B: Optics. Phys.,  12, 1741–1746 (1995).
[Crossref]

Opt. Express (1)

Other (1)

K. Petermann, Laser diode modulation and noise. Dordrecht, the Netherlands: Kluwer Academic (1991). Gigabit data communication standards internet links. [Online]. Available: http://standards.ieee.org/getieee802/download/802.3-2005section3.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Passively aligned bidirectional module: (a) photograph and (b) schematic diagram.

Fig. 2.
Fig. 2.

Setup for the data transmission experiment.

Fig. 3.
Fig. 3.

Temperature dependence of the static characteristics of a VCSEL chip in the temperature range from -20 to 120 °C with a 20 °C step: (a) LI and VI characteristics and (b) temperature dependence of the threshold current.

Fig. 4.
Fig. 4.

Filtered eye diagrams measured in the temperature range from -20 to 120 °C with a 20 °C step with fixed “on” and “off” current of 4.6 mA and 1.0 mA, respectively. The time scale is 200 ps/div., the vertical scale is 100 μW/div., the bit rate is 1.25-Gb/s and non-return-to-zero pseudorandom bit sequence of 27-1 is used.

Fig. 5.
Fig. 5.

Eye diagrams measured with “off” current of 0.6 mA and 0.8 mA with fixed “on” current of 4.6 mA at -20 °C and 120 °C.

Metrics