Abstract

This paper describes a newly designed all-glass miniature (Ø 125 μm) fiber-optic pressure sensor design that is appropriate for high-volume manufacturing. The fabrication process is based on the chemical etching of specially-designed silica optical fiber, and involves a low number of critical production operations. The presented sensor design can be used with either single-mode or multi-mode lead-in fiber and is compatible with various types of available signal processing techniques. A practical sensor sensitivity exceeding 1000 nm/bar was achieved experimentally, which makes this sensor suitable for low-pressure measurements. The sensor showed high mechanical stability, good quality of optical surfaces, and very high tolerance to pressure overload.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. É. Pinet, "Medical applications / Saving lives," Nature Photon., Tech. Focus (special edition on fiber-optic sensors) 2, 150-152 (2008).
    [CrossRef]
  2. J. S. Heo and J. O. Lim, "A micro total reflective extrinsic Fabry-Perot interferometric fiber optic pressure sensor for medical application," Int. J. Mod. Phys. B,  17, 11991204 (2003).
    [CrossRef]
  3. Q1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, "A fiber-optic pressure microsensor for biomedical applications," Sens. Actuators A,  66, 150-154 (1998).
    [CrossRef]
  4. T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, "Interferometric fiber-optic sensor embedded in spark plug for in-cylinder pressure measurement in engines," Appl. Opt. 42, 10031007 (2003).
    [CrossRef] [PubMed]
  5. S.H. Aref, H. Latifi, M.I. Zibaii, and M. Afshari, "Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application," Opt. Commun. 269, 322330 (2007).
    [CrossRef]
  6. B. Glišić and D. Inaudi, in Fibre optic methods for structural health monitoring, (J. Wiley & sons Eds., 2007).
  7. www.fiso.com,
  8. K. Totsu, Y. Haga, and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry," J. Micromech. Microeng. 15, 71-75 (2005).
    [CrossRef]
  9. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photon. Technol. Lett. 13, 993-995 (2001).
    [CrossRef]
  10. E. Cibula and D. Đonlagić, "Miniature fiber-optic pressure sensor with a polymer diaphragm," Appl. Opt. 44, 2736-2744 (2005)
    [CrossRef] [PubMed]
  11. D. Đonlagić and E. Cibula, "All-fiber high-sensitivity pressure sensor with SiO2 diaphragm," Opt. Lett. 30, 2071-2073 (2005).
    [CrossRef] [PubMed]
  12. X. Wang, J. Xu, Y. Zhu, L. K. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett. 31, 885-887 (2006).
    [CrossRef] [PubMed]
  13. Q2. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, "High-temperature fiber-tip pressure sensor," IEEE J. Lightwave Technol. 24, 861-869 (2006).
    [CrossRef]
  14. J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
    [CrossRef]
  15. C. Belleville and G. Duplain, "Fabry-Perot optical sensing device for measuring a physical parameter," US Patents #5,202,939 (1993) and #5,392,117 (1995).
  16. M. Di Giovanni, in Flat and corrugated diaphragm design handbook (L.L. Faulkner and S.B. Menkes Eds., CRC Press, 1982), Chap. 12 "Bending of diaphragms under lateral pressure," 130-156.

2006

Q2. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, "High-temperature fiber-tip pressure sensor," IEEE J. Lightwave Technol. 24, 861-869 (2006).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
[CrossRef]

X. Wang, J. Xu, Y. Zhu, L. K. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett. 31, 885-887 (2006).
[CrossRef] [PubMed]

2005

2001

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photon. Technol. Lett. 13, 993-995 (2001).
[CrossRef]

1998

Q1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, "A fiber-optic pressure microsensor for biomedical applications," Sens. Actuators A,  66, 150-154 (1998).
[CrossRef]

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photon. Technol. Lett. 13, 993-995 (2001).
[CrossRef]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photon. Technol. Lett. 13, 993-995 (2001).
[CrossRef]

Cibula, E.

Cooper, K. L.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
[CrossRef]

Q2. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, "High-temperature fiber-tip pressure sensor," IEEE J. Lightwave Technol. 24, 861-869 (2006).
[CrossRef]

Cooper, L. K.

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photon. Technol. Lett. 13, 993-995 (2001).
[CrossRef]

Ðonlagic, D.

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry," J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry," J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Itoh, H.

Q1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, "A fiber-optic pressure microsensor for biomedical applications," Sens. Actuators A,  66, 150-154 (1998).
[CrossRef]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photon. Technol. Lett. 13, 993-995 (2001).
[CrossRef]

Kohashi, M.

Q1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, "A fiber-optic pressure microsensor for biomedical applications," Sens. Actuators A,  66, 150-154 (1998).
[CrossRef]

Pickrell, G. R.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
[CrossRef]

Q2. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, "High-temperature fiber-tip pressure sensor," IEEE J. Lightwave Technol. 24, 861-869 (2006).
[CrossRef]

Sugihara, M.

Q1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, "A fiber-optic pressure microsensor for biomedical applications," Sens. Actuators A,  66, 150-154 (1998).
[CrossRef]

Tohyama, O.

Q1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, "A fiber-optic pressure microsensor for biomedical applications," Sens. Actuators A,  66, 150-154 (1998).
[CrossRef]

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry," J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Wang, A.

X. Wang, J. Xu, Y. Zhu, L. K. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett. 31, 885-887 (2006).
[CrossRef] [PubMed]

Q2. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, "High-temperature fiber-tip pressure sensor," IEEE J. Lightwave Technol. 24, 861-869 (2006).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
[CrossRef]

Wang, X.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
[CrossRef]

X. Wang, J. Xu, Y. Zhu, L. K. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett. 31, 885-887 (2006).
[CrossRef] [PubMed]

Xu, J.

X. Wang, J. Xu, Y. Zhu, L. K. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett. 31, 885-887 (2006).
[CrossRef] [PubMed]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
[CrossRef]

Zhu, Y.

X. Wang, J. Xu, Y. Zhu, L. K. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett. 31, 885-887 (2006).
[CrossRef] [PubMed]

Q2. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, "High-temperature fiber-tip pressure sensor," IEEE J. Lightwave Technol. 24, 861-869 (2006).
[CrossRef]

Appl. Opt.

IEEE J. Lightwave Technol.

Q2. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, "High-temperature fiber-tip pressure sensor," IEEE J. Lightwave Technol. 24, 861-869 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, "Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 18, 1134-1136 (2006).
[CrossRef]

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photon. Technol. Lett. 13, 993-995 (2001).
[CrossRef]

J. Micromech. Microeng.

K. Totsu, Y. Haga, and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry," J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Opt. Lett.

Sens. Actuators A

Q1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, "A fiber-optic pressure microsensor for biomedical applications," Sens. Actuators A,  66, 150-154 (1998).
[CrossRef]

Other

T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, "Interferometric fiber-optic sensor embedded in spark plug for in-cylinder pressure measurement in engines," Appl. Opt. 42, 10031007 (2003).
[CrossRef] [PubMed]

S.H. Aref, H. Latifi, M.I. Zibaii, and M. Afshari, "Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application," Opt. Commun. 269, 322330 (2007).
[CrossRef]

B. Glišić and D. Inaudi, in Fibre optic methods for structural health monitoring, (J. Wiley & sons Eds., 2007).

www.fiso.com,

É. Pinet, "Medical applications / Saving lives," Nature Photon., Tech. Focus (special edition on fiber-optic sensors) 2, 150-152 (2008).
[CrossRef]

J. S. Heo and J. O. Lim, "A micro total reflective extrinsic Fabry-Perot interferometric fiber optic pressure sensor for medical application," Int. J. Mod. Phys. B,  17, 11991204 (2003).
[CrossRef]

C. Belleville and G. Duplain, "Fabry-Perot optical sensing device for measuring a physical parameter," US Patents #5,202,939 (1993) and #5,392,117 (1995).

M. Di Giovanni, in Flat and corrugated diaphragm design handbook (L.L. Faulkner and S.B. Menkes Eds., CRC Press, 1982), Chap. 12 "Bending of diaphragms under lateral pressure," 130-156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The pressure sensor simplified fabrication process is performed over only 3 steps: (a) formation of the cavity, (b) fusion splicing with the lead-in fiber and (c) creation of the diaphragm

Fig. 2.
Fig. 2.

SEM photos of the etched cavity: (a) before fire-polishing and (b) after fi re-polishing

Fig. 3.
Fig. 3.

Changes of sensor fringe visibility during splicing and fire-polishing for 3 different sensor-forming fibers obtained from the same batch

Fig. 4.
Fig. 4.

Computer-controlled splicing setup

Fig. 5.
Fig. 5.

Cavity formed by fusion splicing of etched fiber is easy to identify by optical microscope

Fig. 6.
Fig. 6.

SEM photo of a typical sensor with a sensitivity of ~550 nm/bar (×2000)

Fig. 7.
Fig. 7.

SEM photo (×2000) of the diaphragm cross-section showing the entrapped air cavity and the suspended recessed diaphragm. The sensor was cut by scanning ion-beam creating the apparent roughness visible in the front of the sensor fiber

Fig. 8.
Fig. 8.

Deflection of the sensor diaphragm vs. pressure for two sensors with different sensitivities

Fig. 9.
Fig. 9.

Deflection of sensor diaphragm vs. pressure at high pressures showing non linear behavior (sensor sensitivity 550 nm/bar)

Metrics