Abstract

In this paper, we studied phase modulation numerically using metamaterials such as stacked structures of dual split ring resonators (DSRRs). To demonstrate the modulation, a vertical and a planar design were considered, where the wave vectors were parallel and perpendicular to the proposed structures creating 70 degrees and 80 degrees of phase change, respectively. In both of the designs modulation was brought about by changing the effective index of the structure through switching between the open and short states of the DSRRs while maintaining high transmission. One of the attractive features of our design was the thin layers of DSRRs, where for the vertical and planar models the DSRRs layers were 5 mm and 2.28 mm respectively. The numerical results obtained by simulation matched well with the theoretical prediction.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Negative phase advance in polarization independent, multi-layer negative-index metamaterials

Koray Aydin, Zhaofeng Li, Levent Sahin, and Ekmel Ozbay
Opt. Express 16(12) 8835-8844 (2008)

Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms

Jeremy A. Bossard, Seokho Yun, Douglas H. Werner, and Theresa S. Mayer
Opt. Express 17(17) 14771-14779 (2009)

Influence of losses on the superresolution performances of an impedance-matched negative-index material

Giuseppe D'Aguanno, Nadia Mattiucci, and Mark J. Bloemer
J. Opt. Soc. Am. B 25(2) 236-246 (2008)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
    [Crossref]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative index of refraction, Science 292, 77–79, (2001).
    [Crossref] [PubMed]
  3. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
    [Crossref] [PubMed]
  4. Z. Sheng and V. Varadan, “Tuning the effective properties of metamaterials by changing the susbstrate,” J. Appl. Phys.  101, 014909-1, (2007).
    [Crossref]
  5. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas.  39, 387–394, (1990).
    [Crossref]
  6. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
    [Crossref]
  7. K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896 (2004)
    [Crossref] [PubMed]
  8. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left handed materials,” Phys. Rev. Lett.  91, 037401 (2003)
    [Crossref] [PubMed]
  9. H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
    [Crossref] [PubMed]
  10. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
    [Crossref]
  11. O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett.  84, 1198, (2004).
    [Crossref]
  12. P. He, P. Parimi, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electon. Lett.  43, (2007).
    [Crossref]
  13. A. Velez and J. Bonache, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microwave and Wirel. Compon. Lett.  18, 28–30, (2008).
    [Crossref]
  14. D. Smith, S. Schultz, P. Markos, and C. M. Soukoulis “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104-1, (2002).
    [Crossref]
  15. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
    [Crossref]
  16. M. K. Karkkainen and P. Ikonen, “Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate,” Microwave Opt. Technol.Lett. 46, 554–556, (2005).
    [Crossref]
  17. S. Oh and L. Shafai, “Artificial magnetic conductor using split ring resonators and its applications to antennas,” Microwave Opt. Technol.Lett.  48, 329–334, (2006).
    [Crossref]
  18. S. Maslovski, P. Ikonen, I. kolmakov, and S. Tretyakov, “Artificial magnetic materials based on the new magnetic particle: metalsolenoid” Prog. Electromag. Res.  54, 61–81, (2005).
    [Crossref]
  19. N. Katsarakis, T. Koschny, and M. Kafesaki, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.  84, 2943–2945, (2004).
    [Crossref]
  20. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782, (2006).
    [Crossref] [PubMed]
  21. M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
    [Crossref]
  22. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
    [Crossref]
  23. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys.  101, 024911-5, (2007).
    [Crossref]
  24. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
    [Crossref]
  25. C. Balanis, Antenna Theory, third edition (John Wiley & Sons, 2005), Chap. 6.
  26. T. Hand and S. Cummer, “Controllable magnetic metamaterial using digitally addressable split-ring resonator,” IEEE Ant. Propag. Lett. (to be published).

2008 (3)

A. Velez and J. Bonache, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microwave and Wirel. Compon. Lett.  18, 28–30, (2008).
[Crossref]

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

2007 (4)

P. He, P. Parimi, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electon. Lett.  43, (2007).
[Crossref]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys.  101, 024911-5, (2007).
[Crossref]

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Z. Sheng and V. Varadan, “Tuning the effective properties of metamaterials by changing the susbstrate,” J. Appl. Phys.  101, 014909-1, (2007).
[Crossref]

2006 (3)

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

S. Oh and L. Shafai, “Artificial magnetic conductor using split ring resonators and its applications to antennas,” Microwave Opt. Technol.Lett.  48, 329–334, (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782, (2006).
[Crossref] [PubMed]

2005 (6)

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

C. Balanis, Antenna Theory, third edition (John Wiley & Sons, 2005), Chap. 6.

S. Maslovski, P. Ikonen, I. kolmakov, and S. Tretyakov, “Artificial magnetic materials based on the new magnetic particle: metalsolenoid” Prog. Electromag. Res.  54, 61–81, (2005).
[Crossref]

M. K. Karkkainen and P. Ikonen, “Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate,” Microwave Opt. Technol.Lett. 46, 554–556, (2005).
[Crossref]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

2004 (3)

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896 (2004)
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, and M. Kafesaki, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.  84, 2943–2945, (2004).
[Crossref]

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett.  84, 1198, (2004).
[Crossref]

2003 (2)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left handed materials,” Phys. Rev. Lett.  91, 037401 (2003)
[Crossref] [PubMed]

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

2002 (1)

D. Smith, S. Schultz, P. Markos, and C. M. Soukoulis “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104-1, (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative index of refraction, Science 292, 77–79, (2001).
[Crossref] [PubMed]

1990 (1)

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas.  39, 387–394, (1990).
[Crossref]

1968 (1)

V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
[Crossref]

Acher, O.

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett.  84, 1198, (2004).
[Crossref]

Averitt, R.

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

Aydin, K.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys.  101, 024911-5, (2007).
[Crossref]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896 (2004)
[Crossref] [PubMed]

Azad, A.

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

Balanis, C.

C. Balanis, Antenna Theory, third edition (John Wiley & Sons, 2005), Chap. 6.

Bonache, J.

A. Velez and J. Bonache, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microwave and Wirel. Compon. Lett.  18, 28–30, (2008).
[Crossref]

Bratkovsky, A.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Bulu, I.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

Chen, H. T.

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

Chen, H-T.

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

Cummer, S.

T. Hand and S. Cummer, “Controllable magnetic metamaterial using digitally addressable split-ring resonator,” IEEE Ant. Propag. Lett. (to be published).

Dudley, D.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Duncan, W.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Econonou, E.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

Ghodgaonkar, D. K.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas.  39, 387–394, (1990).
[Crossref]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

Gossard, A.

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

Gundogdu, T.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

Guven, K.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896 (2004)
[Crossref] [PubMed]

Hand, T.

T. Hand and S. Cummer, “Controllable magnetic metamaterial using digitally addressable split-ring resonator,” IEEE Ant. Propag. Lett. (to be published).

He, P.

P. He, P. Parimi, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electon. Lett.  43, (2007).
[Crossref]

Ikonen, P.

M. K. Karkkainen and P. Ikonen, “Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate,” Microwave Opt. Technol.Lett. 46, 554–556, (2005).
[Crossref]

S. Maslovski, P. Ikonen, I. kolmakov, and S. Tretyakov, “Artificial magnetic materials based on the new magnetic particle: metalsolenoid” Prog. Electromag. Res.  54, 61–81, (2005).
[Crossref]

Islam, M.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Kafesaki, M.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

N. Katsarakis, T. Koschny, and M. Kafesaki, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.  84, 2943–2945, (2004).
[Crossref]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

Karkkainen, M. K.

M. K. Karkkainen and P. Ikonen, “Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate,” Microwave Opt. Technol.Lett. 46, 554–556, (2005).
[Crossref]

Katsarakis, N.

N. Katsarakis, T. Koschny, and M. Kafesaki, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.  84, 2943–2945, (2004).
[Crossref]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896 (2004)
[Crossref] [PubMed]

Kivshar, Y. S.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left handed materials,” Phys. Rev. Lett.  91, 037401 (2003)
[Crossref] [PubMed]

kolmakov, I.

S. Maslovski, P. Ikonen, I. kolmakov, and S. Tretyakov, “Artificial magnetic materials based on the new magnetic particle: metalsolenoid” Prog. Electromag. Res.  54, 61–81, (2005).
[Crossref]

Koschny, T.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

N. Katsarakis, T. Koschny, and M. Kafesaki, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.  84, 2943–2945, (2004).
[Crossref]

Kuekes, P.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

Logeeswaran, V. J.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Lu, Z.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

Markos, P.

D. Smith, S. Schultz, P. Markos, and C. M. Soukoulis “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104-1, (2002).
[Crossref]

Maslovski, S.

S. Maslovski, P. Ikonen, I. kolmakov, and S. Tretyakov, “Artificial magnetic materials based on the new magnetic particle: metalsolenoid” Prog. Electromag. Res.  54, 61–81, (2005).
[Crossref]

Murakowski, J. A.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

Oh, S.

S. Oh and L. Shafai, “Artificial magnetic conductor using split ring resonators and its applications to antennas,” Microwave Opt. Technol.Lett.  48, 329–334, (2006).
[Crossref]

Ohara, J.

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

Ozbay, E.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys.  101, 024911-5, (2007).
[Crossref]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896 (2004)
[Crossref] [PubMed]

Padilla, W. J.

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

Parimi, P.

P. He, P. Parimi, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electon. Lett.  43, (2007).
[Crossref]

Penciu, R.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782, (2006).
[Crossref] [PubMed]

Prather, D. W.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

Reynet, O.

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett.  84, 1198, (2004).
[Crossref]

Schneider, G. J.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

Schuetz, C. A.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

Schultz, S.

D. Smith, S. Schultz, P. Markos, and C. M. Soukoulis “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104-1, (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative index of refraction, Science 292, 77–79, (2001).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782, (2006).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

Shadrivov, I. V.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left handed materials,” Phys. Rev. Lett.  91, 037401 (2003)
[Crossref] [PubMed]

Shafai, L.

S. Oh and L. Shafai, “Artificial magnetic conductor using split ring resonators and its applications to antennas,” Microwave Opt. Technol.Lett.  48, 329–334, (2006).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative index of refraction, Science 292, 77–79, (2001).
[Crossref] [PubMed]

Sheng, Z.

Z. Sheng and V. Varadan, “Tuning the effective properties of metamaterials by changing the susbstrate,” J. Appl. Phys.  101, 014909-1, (2007).
[Crossref]

Shi, S.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

Shrekenhamer, D.

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

Slaughter, J.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Smith, D.

D. Smith, S. Schultz, P. Markos, and C. M. Soukoulis “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104-1, (2002).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782, (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative index of refraction, Science 292, 77–79, (2001).
[Crossref] [PubMed]

Soukoulis, C.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

Soukoulis, C. M.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896 (2004)
[Crossref] [PubMed]

D. Smith, S. Schultz, P. Markos, and C. M. Soukoulis “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104-1, (2002).
[Crossref]

Stameroff, A.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Taylor, A.

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

Tretyakov, S.

S. Maslovski, P. Ikonen, I. kolmakov, and S. Tretyakov, “Artificial magnetic materials based on the new magnetic particle: metalsolenoid” Prog. Electromag. Res.  54, 61–81, (2005).
[Crossref]

Varadan, V.

Z. Sheng and V. Varadan, “Tuning the effective properties of metamaterials by changing the susbstrate,” J. Appl. Phys.  101, 014909-1, (2007).
[Crossref]

Varadan, V. K.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas.  39, 387–394, (1990).
[Crossref]

Varadan, V. V.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas.  39, 387–394, (1990).
[Crossref]

Velez, A.

A. Velez and J. Bonache, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microwave and Wirel. Compon. Lett.  18, 28–30, (2008).
[Crossref]

Veselago, V. G.

V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
[Crossref]

Vittoria, C.

P. He, P. Parimi, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electon. Lett.  43, (2007).
[Crossref]

Wang, S.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Williams, R.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Wu, W.

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Zharov, A. A.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left handed materials,” Phys. Rev. Lett.  91, 037401 (2003)
[Crossref] [PubMed]

Zide, J.

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

Appl. Phys. A (1)

V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A 87, 209–216, (2007).
[Crossref]

Appl. Phys. Lett (2)

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett.  84, 1198, (2004).
[Crossref]

N. Katsarakis, T. Koschny, and M. Kafesaki, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.  84, 2943–2945, (2004).
[Crossref]

Electon. Lett (1)

P. He, P. Parimi, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electon. Lett.  43, (2007).
[Crossref]

IEEE Ant. Propag. Lett (1)

T. Hand and S. Cummer, “Controllable magnetic metamaterial using digitally addressable split-ring resonator,” IEEE Ant. Propag. Lett. (to be published).

IEEE Microwave and Wirel. Compon. Lett (1)

A. Velez and J. Bonache, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microwave and Wirel. Compon. Lett.  18, 28–30, (2008).
[Crossref]

IEEE Trans. Instrum. Meas (1)

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas.  39, 387–394, (1990).
[Crossref]

J. Appl. Phys (2)

Z. Sheng and V. Varadan, “Tuning the effective properties of metamaterials by changing the susbstrate,” J. Appl. Phys.  101, 014909-1, (2007).
[Crossref]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys.  101, 024911-5, (2007).
[Crossref]

J. Opt. A: Pure and Appl. Opt (1)

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, “Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt.  7, S21–S22, (2005).
[Crossref]

Microwave Opt. Technol.Lett (1)

S. Oh and L. Shafai, “Artificial magnetic conductor using split ring resonators and its applications to antennas,” Microwave Opt. Technol.Lett.  48, 329–334, (2006).
[Crossref]

Microwave Opt. Technol.Lett. (1)

M. K. Karkkainen and P. Ikonen, “Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate,” Microwave Opt. Technol.Lett. 46, 554–556, (2005).
[Crossref]

Nature (1)

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices.” Nature 444, 597–600, (2006).
[Crossref] [PubMed]

Nature Materials (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic mtamaterials at optical frequencies,” Nature Materials 7, 31–37, (2008).
[Crossref]

Nature Photonics (1)

H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298, (2008).
[Crossref]

New J. Phys (1)

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.  7, 168 (2005).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

D. Smith, S. Schultz, P. Markos, and C. M. Soukoulis “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104-1, (2002).
[Crossref]

Phys. Rev. Lett (2)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left handed materials,” Phys. Rev. Lett.  91, 037401 (2003)
[Crossref] [PubMed]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.  95, 153901(4) (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Prog. Electromag. Res (1)

S. Maslovski, P. Ikonen, I. kolmakov, and S. Tretyakov, “Artificial magnetic materials based on the new magnetic particle: metalsolenoid” Prog. Electromag. Res.  54, 61–81, (2005).
[Crossref]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative index of refraction, Science 292, 77–79, (2001).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782, (2006).
[Crossref] [PubMed]

Sov. Phys USPEKHI (1)

V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
[Crossref]

Other (1)

C. Balanis, Antenna Theory, third edition (John Wiley & Sons, 2005), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Configuration 1: H-field perpendicular to the DSRR. (b) Configuration 2: k vector perpendicular to the DSRR

Fig. 2.
Fig. 2.

(a) Extracted real and imaginary parts of the effective index for configuration 1. Shaded region indicates the operating region at 4 GHz. (b) Plot of the Electric field line across the computational region for configuration 1. Shaded region of 5 mm indicates the space occupied by the DSRR unit cell.

Fig. 3.
Fig. 3.

(a) Transmission data for configuration 1 at 4 GHz. (b) Transmission data for configuration 2 at 11.04 GHz.

Fig. 4.
Fig. 4.

(a) Extracted real and imaginary parts of the effective index for configuration 2. The shaded region indicates the operating region of 11.04 GHz. (b) Plot of the Electric field line across the computational region for configuration 2. The shaded region indicates the space occupied by the DSRRs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ = R ± R 2 1
R = 0.5 ( S 11 2 S 21 2 + 1 S 11 )
T = ( S 11 + S 21 Γ 1 ( S 11 + S 21 ) Γ )
Δϕ = ( Δ n eff ) kd

Metrics