Abstract

We experimentally demonstrate all-optical self-switching based on sub nanosecond pulse propagation through an optimized fiber Bragg grating with a π phase-jump. The jump acts as a cavity leading to an intensity enhancement by factor 19. At pulse peak powers of 1.5 kW we observe 4.2 dB nonlinear change in transmission. Experimental results are consistent with numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
    [CrossRef]
  2. R. Kashyap, Fiber Bragg Gratings (San Diego, CA: Academic, 1999).
  3. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
    [CrossRef]
  4. B. J. Eggleton and C. M. de Sterke,"Nonlinear pulse propagation in Bragg grating," J. Opt. Soc. Am. B 14, 2980-2993 (1997).
    [CrossRef]
  5. J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, "Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings," Opt. Lett. 30, 2457-2459 (2005).
    [CrossRef] [PubMed]
  6. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, "Experimental observation of the nonlinear pulse compression in nonuniform Bragg gratings," Opt. Lett. 22, 1837-1839 (1997).
    [CrossRef]
  7. N. G. R. Broderick, D. J. Richardson, and M. Ibsen, "Nonlinear switching in 20-cm-long fiber Bragg grating," Opt. Lett. 25, 536-538 (2000).
    [CrossRef]
  8. S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990).
    [CrossRef]
  9. H. Lee, and G. P. Agrawal, "Nonlinear switching of optical pulses in fiber Bragg gratings," IEEE J. Quantum Electron. 39, 508-515 (2003).
    [CrossRef]
  10. A. E. Bieber, T. G. Brown, and R. C. Tiberio, "Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors," Opt. Lett. 20, 2216-2218(1995).
    [CrossRef] [PubMed]
  11. A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
    [CrossRef]
  12. D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 1991).
  13. I. C. M. Littler, T. Grujic, B. J. Eggleton, "Photothermal effects in fiber Bragg gratings," Appl. Opt. 45, 4679-4685 (2006).
    [CrossRef] [PubMed]
  14. C. M. de Sterke, K. R. Jackson, and B. D. Robert, "Nonlinear coupled mode equations on a finite interval: a numerical procedure," J. Opt. Soc. Am. B 8, 403-412 (1991).
    [CrossRef]
  15. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).
  16. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Highperformance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am. B 23, 1323-1331 (2006).
    [CrossRef]
  17. H. C. Hong, D. -I. Yeom, E. C. M¨agi, L. B. Fu, B. T. Kuhlmey, C. Martijn de Sterke, and B. J. Eggleton,"Nonlinear switching using long-period gratings in As2S3 chalcogenide fiber," J. Opt. Soc. Am. B 25, 1393-1401 (2008).
    [CrossRef]

2008

2006

2005

2003

H. Lee, and G. P. Agrawal, "Nonlinear switching of optical pulses in fiber Bragg gratings," IEEE J. Quantum Electron. 39, 508-515 (2003).
[CrossRef]

2000

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

N. G. R. Broderick, D. J. Richardson, and M. Ibsen, "Nonlinear switching in 20-cm-long fiber Bragg grating," Opt. Lett. 25, 536-538 (2000).
[CrossRef]

1997

1995

1991

1990

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990).
[CrossRef]

1979

H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

1978

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Agrawal, G. P.

H. Lee, and G. P. Agrawal, "Nonlinear switching of optical pulses in fiber Bragg gratings," IEEE J. Quantum Electron. 39, 508-515 (2003).
[CrossRef]

Asobe, M.

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).

Baker, N. J.

Bieber, A. E.

Broderick, N. G. R.

Brown, T. G.

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

de Sterke, C. M.

Eggleton, B. J.

Fu, L. B.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Garmire, E.

H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Grujic, T.

Hibino, Y.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Hong, H. C.

Ibsen, M.

Jackson, K. R.

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Kuhlmey, B. T.

Laming, R. I.

Larochelle, S.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990).
[CrossRef]

Lee, H.

H. Lee, and G. P. Agrawal, "Nonlinear switching of optical pulses in fiber Bragg gratings," IEEE J. Quantum Electron. 39, 508-515 (2003).
[CrossRef]

Littler, I. C. M.

M¨agi, E. C.

Marburger, J. H.

H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Martijn de Sterke, C.

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

Mizrahi, V.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990).
[CrossRef]

Mok, J. T.

Moss, D. J.

Richardson, D. J.

Robert, B. D.

Shokooh-Saremi, M.

Stegeman, G.I.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990).
[CrossRef]

Ta’eed, V. G.

Taverner, D.

Tiberio, R. C.

Tsoy, E.

Winful, H. G.

H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Yeom, D. -I.

Appl. Opt.

Appl. Phys. Lett.

H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Electron. Lett.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990).
[CrossRef]

IEEE J. Quantum Electron.

H. Lee, and G. P. Agrawal, "Nonlinear switching of optical pulses in fiber Bragg gratings," IEEE J. Quantum Electron. 39, 508-515 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Laser Technol.

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).

Opt. Lett.

Other

R. Kashyap, Fiber Bragg Gratings (San Diego, CA: Academic, 1999).

D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup. The phase-shifted FBG is shown schematically, together with the field intensity at resonance. (b) Calculated transmission spectrum exhibits a narrow resonance peak at Bragg wavelength λ 0 = λB (dotted line), which shifts to a longer wavelength λ 1 at high intensities (solid line) due to the Kerr effect.

Fig. 2.
Fig. 2.

Measured transmission spectrum at low intensities (solid curve) and at 1.5 kW peak power (dotted curve). Inset shows a close-up of the resonance region; δ 1,2,3 = -2,7,18 pm correspond to detunings from the Bragg wavelength for which detailed results are shown.

Fig. 3.
Fig. 3.

(a) Power transfer curves: the markers (square, triangle and diamond) represent measured data for detunings δ 1,2,3 = -2,7,18 pm from the resonance. The curves (solid, dot, dash dot) are corresponding numerical results. (b) Transmittance at the different de-tunings.

Fig. 4.
Fig. 4.

Pulse profiles in reflection (r) and transmission (t) with the reference input signal (i) at 1.5 kW peak power and detuning δ 3 = 18 pm off the resonance: (a) experimental results, (b) numerical simulations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FWHM λ B = π ( sinh κL 2 ) 2 ,
E + ( 0 ) 2 + E ( 0 ) 2 E 0 2 = cosh ( κL ) ,

Metrics