Abstract

We reported on the annealing features of the RbTiOPO4 planar waveguides fabricated by 6.0 MeV C3+ ion implantation. The thermal stability of the ion-implanted RbTiOPO4 waveguide was investigated by annealing at different temperatures ranging from 260°C to 650°C. Results revealed that when temperatures are higher than 550°C, annealing caused the refractive indices of both ny and nz a saturation behavior. An increase of the ny refractive index in waveguide region was observed after proper annealing. The low loss planar mono-mode waveguides have been achieved in RbTiOPO4 crystals by applying appropriate ion implantation and annealing conditions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and C. T. Seaton, "Nonlinear integrated optics," J. Appl. Phys. 58, R57-R77 (1985).
    [CrossRef]
  2. M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
    [CrossRef]
  3. F. R. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, "Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy," Opt. Express 15, 13849-13857 (2007).
    [CrossRef] [PubMed]
  4. G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, "Optical waveguide in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32,293-294 (1978).
    [CrossRef]
  5. P. D. Townsend, P. J. Chandler, and L. Zhang, "Optical Effects of Ion Implantation," (Cambridge University Press, Cambridge, 1994).
  6. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
    [CrossRef]
  7. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  8. H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
    [CrossRef]
  9. D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
    [CrossRef]
  10. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
    [CrossRef]
  11. G. V. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, "Low dose carbon implanted waveguides in Nd:YAG," Opt. Express 11, 1291-1296 (2003).
    [CrossRef] [PubMed]
  12. Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
    [CrossRef]
  13. A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
    [CrossRef]
  14. J. F. Ziegler, J. P. Biesack, and U. Littmark, "Stopping and Ranges of Ions in Matter," (Pergamon, New York, 1985).
  15. R. Ramponi, R. Osellame, and M. Marangoni, "Two straightforward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1120 (2002).
    [CrossRef]
  16. H. Hartung, E. B. Kley, A. Tünnermann, T. Gischkat, F. Schrempel, and W. Wesch, "Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching," Opt. Lett. 33, 2320-2322 (2008).
    [CrossRef] [PubMed]
  17. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
    [CrossRef]
  18. V. V. Atuchin, N. Yu. Maklakova, L. D. Pokrovsky, and V. N. Semenenko, "Restoration of KTiOPO4 surface by annealing," Opt. Mater. 23, 363-367 (2003).
    [CrossRef]
  19. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
    [CrossRef]
  20. J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, "Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguide," J. Appl. Phys. 87, 3199-3202 (2000).
    [CrossRef]

2008 (2)

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

H. Hartung, E. B. Kley, A. Tünnermann, T. Gischkat, F. Schrempel, and W. Wesch, "Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching," Opt. Lett. 33, 2320-2322 (2008).
[CrossRef] [PubMed]

2007 (2)

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, "Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy," Opt. Express 15, 13849-13857 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

2005 (1)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

2004 (2)

M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

2003 (2)

V. V. Atuchin, N. Yu. Maklakova, L. D. Pokrovsky, and V. N. Semenenko, "Restoration of KTiOPO4 surface by annealing," Opt. Mater. 23, 363-367 (2003).
[CrossRef]

G. V. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, "Low dose carbon implanted waveguides in Nd:YAG," Opt. Express 11, 1291-1296 (2003).
[CrossRef] [PubMed]

2002 (2)

R. Ramponi, R. Osellame, and M. Marangoni, "Two straightforward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1120 (2002).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

2001 (2)

A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

2000 (1)

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, "Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguide," J. Appl. Phys. 87, 3199-3202 (2000).
[CrossRef]

1985 (1)

G. I. Stegeman and C. T. Seaton, "Nonlinear integrated optics," J. Appl. Phys. 58, R57-R77 (1985).
[CrossRef]

1978 (1)

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, "Optical waveguide in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32,293-294 (1978).
[CrossRef]

Agranat, A. J.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Agulló-López, F.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Albrecht, H.

Angert, N.

M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Atuchin, V. V.

V. V. Atuchin, N. Yu. Maklakova, L. D. Pokrovsky, and V. N. Semenenko, "Restoration of KTiOPO4 surface by annealing," Opt. Mater. 23, 363-367 (2003).
[CrossRef]

Bakhouya, Ch.

A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Boudrioua, A.

A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
[CrossRef]

Caballero, O.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Cantelar, E.

Chandler, P. J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, "Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguide," J. Appl. Phys. 87, 3199-3202 (2000).
[CrossRef]

Chen, F.

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Chiarini, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Commandré, M.

Correra, L.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Destefanis, G. L.

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, "Optical waveguide in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32,293-294 (1978).
[CrossRef]

Domenech, M.

Fathei, R.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Gailliard, J. P.

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, "Optical waveguide in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32,293-294 (1978).
[CrossRef]

García, G.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Gischkat, T.

Gumennik, A.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Guzzi, R.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Hartung, H.

Hass, M.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Hildenbrand, A.

Hu, H.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Ilan, H.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Jaque, D.

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

Jia, C. L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Jiang, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Jiao, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

Kley, E. B.

Lifante, G.

Loulergue, J. C.

A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
[CrossRef]

Lu, F.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Lu, Q. M.

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

Ma, H. J.

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

Maklakova, N. Yu.

V. V. Atuchin, N. Yu. Maklakova, L. D. Pokrovsky, and V. N. Semenenko, "Restoration of KTiOPO4 surface by annealing," Opt. Mater. 23, 363-367 (2003).
[CrossRef]

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, "Two straightforward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1120 (2002).
[CrossRef]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Moretti, P.

A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
[CrossRef]

Natoli, J. Y.

Nie, R.

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

Olivares, J.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, "Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguide," J. Appl. Phys. 87, 3199-3202 (2000).
[CrossRef]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, "Two straightforward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1120 (2002).
[CrossRef]

Pokrovsky, L. D.

V. V. Atuchin, N. Yu. Maklakova, L. D. Pokrovsky, and V. N. Semenenko, "Restoration of KTiOPO4 surface by annealing," Opt. Mater. 23, 363-367 (2003).
[CrossRef]

Polgár, K.

A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
[CrossRef]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, "Two straightforward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1120 (2002).
[CrossRef]

Rams, J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, "Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguide," J. Appl. Phys. 87, 3199-3202 (2000).
[CrossRef]

Rickards, J.

Roth, M.

M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Schrempel, F.

Schwarzman, G.

M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
[CrossRef]

Seaton, C. T.

G. I. Stegeman and C. T. Seaton, "Nonlinear integrated optics," J. Appl. Phys. 58, R57-R77 (1985).
[CrossRef]

Semenenko, V. N.

V. V. Atuchin, N. Yu. Maklakova, L. D. Pokrovsky, and V. N. Semenenko, "Restoration of KTiOPO4 surface by annealing," Opt. Mater. 23, 363-367 (2003).
[CrossRef]

Shachar, I.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Shen, D. Y.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Shi, B. R.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and C. T. Seaton, "Nonlinear integrated optics," J. Appl. Phys. 58, R57-R77 (1985).
[CrossRef]

Tan, Y.

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

Théodore, F.

Townsend, P. D.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, "Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguide," J. Appl. Phys. 87, 3199-3202 (2000).
[CrossRef]

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, "Optical waveguide in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32,293-294 (1978).
[CrossRef]

Tseitlin, M.

M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
[CrossRef]

Tünnermann, A.

Vázquez, G. V.

Wagner, F. R.

Wang, K. M.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Wang, L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

Wang, L. L.

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

Wang, X. L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

Wesch, W.

Zharov, A.

M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, "Optical waveguide in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32,293-294 (1978).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electro-optic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

Y. Jiao, K. M. Wang, X. L. Wang, F. Chen, L. Wang, L. L. Wang, Q. M. Lu, H. J. Ma, and R. Nie, "Optical waveguide formed in RbTiOPO4 crystal by 6.0 MeV O3+ implantation," Chin. Phys. Lett. 23, 3327-3330 (2006).
[CrossRef]

J. Appl. Phys. (6)

A. Boudrioua, Ch. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgár, "Low-loss optical waveguides in Li2B4O7 crystal formed by He+ implantation," J. Appl. Phys. 89, 7716-7721 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

G. I. Stegeman and C. T. Seaton, "Nonlinear integrated optics," J. Appl. Phys. 58, R57-R77 (1985).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, "Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions," J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, "Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguide," J. Appl. Phys. 87, 3199-3202 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (2)

V. V. Atuchin, N. Yu. Maklakova, L. D. Pokrovsky, and V. N. Semenenko, "Restoration of KTiOPO4 surface by annealing," Opt. Mater. 23, 363-367 (2003).
[CrossRef]

M. Roth, N. Angert, M. Tseitlin, G. Schwarzman, and A. Zharov, "Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO4 crystals," Opt. Mater. 26, 465-470 (2004).
[CrossRef]

Phys. Rev. B (1)

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Ramponi, R. Osellame, and M. Marangoni, "Two straightforward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1120 (2002).
[CrossRef]

Other (2)

J. F. Ziegler, J. P. Biesack, and U. Littmark, "Stopping and Ranges of Ions in Matter," (Pergamon, New York, 1985).

P. D. Townsend, P. J. Chandler, and L. Zhang, "Optical Effects of Ion Implantation," (Cambridge University Press, Cambridge, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Evolution of effective refractive indices versus annealing temperatures for the RTP waveguide formed by 6.0 MeV C3+ ion implantation at a fluence of 1×1014 ions/cm2.

Fig. 2.
Fig. 2.

Measured relative intensity of the light reflected from the prism versus the effective refractive index (ny ) of the incident light for the RTP waveguide formed by 6.0 MeV C3+ ion implantation with a fluence of 1×1014 ions/cm2 after annealing at 550°C for 30 min.

Fig. 3.
Fig. 3.

Measured (a) 2D and (b) 3D near field intensity profiles of the RTP planar waveguide mode which was collected by CCD camera. The RTP planar waveguide was formed by 6.0 MeV C3+ ion implantation at a fluence of 1×1014 ions/cm2 and after annealing at 550°C for 30 min.

Fig. 4.
Fig. 4.

The guiding ny (a) and nz (b) modes of the RTP waveguide formed by 6.0 MeV C3+ ion implantation with a fluence of 5×1013 ions/cm2 at wavelength of 633 nm before and after annealing at 260°C, 300°C, 350°C and 400°C for 30 min.

Tables (1)

Tables Icon

Table 1. Parameters of the isochronally additive annealings for the RTP waveguide formed by 6.0 MeV C3+ ion implantation with a fluence of 1×1014 ions/cm2. All the annealing treatments were performed in atmosphere.

Metrics