Abstract

We propose theoretically and experimentally demonstrate an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. The proposed system permits a full reconfigurability of photonic microwave filter and therefore high-order UWB pulses can be generated to successfully satisfy the FCC regulation. Moreover, the photonic UWB pulse generator is adaptable to different pulse modulation formats since the amplitude, polarity and time delay of generated pulses can be controlled with a reconfiguration time up to tens of nanoseconds.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio tecnhonology: Potencitail and challenges ahead," IEEE Commum. Mag. 41, 66-74 (2003).
    [CrossRef]
  2. G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
    [CrossRef]
  3. J. H. Reed Christopher, An introduction to Ultra Wideband Communication System (Prentice Hall Communications Engineering and Emerging Technologies Series, 2005).
  4. L. Yang and G. B. Giannakis, "Ultra-Wideband Communications: an idea whose time has come," IEEE Signal Process. Mag. 21, pp 26-54 (2004).
    [CrossRef]
  5. Q2. J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
    [CrossRef]
  6. J. Yao, F. Zeng, and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007).
    [CrossRef]
  7. M. Jazayerifar, B. Cabon, and J.A. Salehi, "Transmission of Multi-Band OFDM and Impulse Radio Ultra-Wideband Signals Over Single Mode Fiber," J. Lightwave Technol. 26, 2594-2603 (2008).
    [CrossRef]
  8. S. Pan and J. Yao, "Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer," Opt. Lett. 34, 160-162 (2009).
    [CrossRef] [PubMed]
  9. J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, "Photonic Polarity-Switchable Ultra-Wideband Pulse Generation Using a Tunable Sagnac Interferometer Comb Filter," IEEE Photon. Technol. Lett. 20, 1320-1322 (2008).
    [CrossRef]
  10. I. S. Lin and A. M. Weiner, "Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals," J. Lightwave Technol. 26, 2692-2699 (2008)
    [CrossRef]
  11. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, "Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator," Opt. Express 15, 18156-18161 (2007).
    [CrossRef] [PubMed]
  12. Q. Wang and J. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007).
    [CrossRef] [PubMed]
  13. Q3. I. S. Lin, J. D. McKinney, and A.M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
    [CrossRef]
  14. M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
    [CrossRef]
  15. J. D. McKinney, D. Peroulis, and A. M. Weiner, "Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation," IEEE Trans. Microwave Theory Tech. 56, 710- 719 (2008).
    [CrossRef]
  16. J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247- 4255 (2006).
    [CrossRef]
  17. F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823- 825 (2006).
    [CrossRef]
  18. F. Zeng and J. Yao, "Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006).
    [CrossRef]
  19. Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
    [CrossRef] [PubMed]
  20. H. Chen, M. Chen, T. Wang, M. Li, and S. Xie, "Methods for Ultra-Wideband Pulse Generation Based on Optical Cross-Polarization Modulation," J. Lightwave Technol. 26, 2492-2499 (2008)
    [CrossRef]
  21. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, "Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator," Opt. Lett. 33, 288-290 (2008).
    [CrossRef] [PubMed]
  22. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 22, 702-723 (2005).
    [CrossRef]
  23. R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832- 846 (2006).
    [CrossRef]
  24. J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201- 229 (2006).
    [CrossRef]
  25. J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
    [CrossRef]
  26. J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave Photonic filters with negative coefficients based on phase inversion in an Electro-optic Modulator," Opt. Lett. 28, 1415- 1417 (2003).
    [CrossRef] [PubMed]
  27. J. Li, K. Xu, H. Huang, J. Wu, J. Lin, S. Fu, M. Tang, and P. Shum, "Photonic Pulse Generation and Modulation for Ultra-Wideband-over-Fiber Applications," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThD3.
    [PubMed]
  28. D. Marcuse, "Pulse distortion in single-mode fibers," Appl. Opt. 19, 1653-1660 (1981).
    [CrossRef]

2009

2008

J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, "Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator," Opt. Lett. 33, 288-290 (2008).
[CrossRef] [PubMed]

H. Chen, M. Chen, T. Wang, M. Li, and S. Xie, "Methods for Ultra-Wideband Pulse Generation Based on Optical Cross-Polarization Modulation," J. Lightwave Technol. 26, 2492-2499 (2008)
[CrossRef]

M. Jazayerifar, B. Cabon, and J.A. Salehi, "Transmission of Multi-Band OFDM and Impulse Radio Ultra-Wideband Signals Over Single Mode Fiber," J. Lightwave Technol. 26, 2594-2603 (2008).
[CrossRef]

I. S. Lin and A. M. Weiner, "Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals," J. Lightwave Technol. 26, 2692-2699 (2008)
[CrossRef]

M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

J. D. McKinney, D. Peroulis, and A. M. Weiner, "Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation," IEEE Trans. Microwave Theory Tech. 56, 710- 719 (2008).
[CrossRef]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, "Photonic Polarity-Switchable Ultra-Wideband Pulse Generation Using a Tunable Sagnac Interferometer Comb Filter," IEEE Photon. Technol. Lett. 20, 1320-1322 (2008).
[CrossRef]

2007

2006

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247- 4255 (2006).
[CrossRef]

F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823- 825 (2006).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201- 229 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832- 846 (2006).
[CrossRef]

2005

Q3. I. S. Lin, J. D. McKinney, and A.M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 22, 702-723 (2005).
[CrossRef]

2004

L. Yang and G. B. Giannakis, "Ultra-Wideband Communications: an idea whose time has come," IEEE Signal Process. Mag. 21, pp 26-54 (2004).
[CrossRef]

2003

Q1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio tecnhonology: Potencitail and challenges ahead," IEEE Commum. Mag. 41, 66-74 (2003).
[CrossRef]

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave Photonic filters with negative coefficients based on phase inversion in an Electro-optic Modulator," Opt. Lett. 28, 1415- 1417 (2003).
[CrossRef] [PubMed]

1995

J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
[CrossRef]

1981

Abtahi, M.

M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

Blais, S.

Cabon, B.

Capmany, J.

Q2. J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201- 229 (2006).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 22, 702-723 (2005).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave Photonic filters with negative coefficients based on phase inversion in an Electro-optic Modulator," Opt. Lett. 28, 1415- 1417 (2003).
[CrossRef] [PubMed]

J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
[CrossRef]

Cascón, J.

J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
[CrossRef]

Chen, H.

Chen, M.

Fu, S.

Giannakis, G. B.

L. Yang and G. B. Giannakis, "Ultra-Wideband Communications: an idea whose time has come," IEEE Signal Process. Mag. 21, pp 26-54 (2004).
[CrossRef]

Hirt, W.

Q1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio tecnhonology: Potencitail and challenges ahead," IEEE Commum. Mag. 41, 66-74 (2003).
[CrossRef]

Jazayerifar, M.

LaRochelle, S.

M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Li, J.

Li, M.

Lin, I. S.

I. S. Lin and A. M. Weiner, "Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals," J. Lightwave Technol. 26, 2692-2699 (2008)
[CrossRef]

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247- 4255 (2006).
[CrossRef]

Q3. I. S. Lin, J. D. McKinney, and A.M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

Lin, J.

Magné, J.

M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Marcuse, D.

Marín, J.L.

J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
[CrossRef]

Martí, J.

J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
[CrossRef]

Martinez, A.

McKinney, J. D.

J. D. McKinney, D. Peroulis, and A. M. Weiner, "Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation," IEEE Trans. Microwave Theory Tech. 56, 710- 719 (2008).
[CrossRef]

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247- 4255 (2006).
[CrossRef]

Q3. I. S. Lin, J. D. McKinney, and A.M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

Minasian, R. A.

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832- 846 (2006).
[CrossRef]

Mirsshafiei, M.

M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Novak, D.

Q2. J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Ortega, B.

Pan, S.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201- 229 (2006).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 22, 702-723 (2005).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave Photonic filters with negative coefficients based on phase inversion in an Electro-optic Modulator," Opt. Lett. 28, 1415- 1417 (2003).
[CrossRef] [PubMed]

J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
[CrossRef]

Peroulis, D.

J. D. McKinney, D. Peroulis, and A. M. Weiner, "Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation," IEEE Trans. Microwave Theory Tech. 56, 710- 719 (2008).
[CrossRef]

Porcine, D.

Q1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio tecnhonology: Potencitail and challenges ahead," IEEE Commum. Mag. 41, 66-74 (2003).
[CrossRef]

Research, P.

Q1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio tecnhonology: Potencitail and challenges ahead," IEEE Commum. Mag. 41, 66-74 (2003).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

Rusch, L. A.

M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Salehi, J.A.

Sales, S.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 22, 702-723 (2005).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave Photonic filters with negative coefficients based on phase inversion in an Electro-optic Modulator," Opt. Lett. 28, 1415- 1417 (2003).
[CrossRef] [PubMed]

J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995).
[CrossRef]

Shum, P.

Tang, M.

Wang, Q.

Wang, T.

Weiner, A. M.

J. D. McKinney, D. Peroulis, and A. M. Weiner, "Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation," IEEE Trans. Microwave Theory Tech. 56, 710- 719 (2008).
[CrossRef]

I. S. Lin and A. M. Weiner, "Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals," J. Lightwave Technol. 26, 2692-2699 (2008)
[CrossRef]

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247- 4255 (2006).
[CrossRef]

Weiner, A.M.

Q3. I. S. Lin, J. D. McKinney, and A.M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

Wu, J.

Xie, S.

Xu, K.

Yang, L.

L. Yang and G. B. Giannakis, "Ultra-Wideband Communications: an idea whose time has come," IEEE Signal Process. Mag. 21, pp 26-54 (2004).
[CrossRef]

Yao, J.

Zeng, F.

J. Yao, F. Zeng, and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823- 825 (2006).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006).
[CrossRef]

Appl. Opt.

IEEE Commum. Mag.

Q1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio tecnhonology: Potencitail and challenges ahead," IEEE Commum. Mag. 41, 66-74 (2003).
[CrossRef]

IEEE Microwave Mag.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

IEEE Microwave Wirel. Compon. Lett.

Q3. I. S. Lin, J. D. McKinney, and A.M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823- 825 (2006).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006).
[CrossRef]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, "Photonic Polarity-Switchable Ultra-Wideband Pulse Generation Using a Tunable Sagnac Interferometer Comb Filter," IEEE Photon. Technol. Lett. 20, 1320-1322 (2008).
[CrossRef]

IEEE Signal Process. Mag.

L. Yang and G. B. Giannakis, "Ultra-Wideband Communications: an idea whose time has come," IEEE Signal Process. Mag. 21, pp 26-54 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. D. McKinney, D. Peroulis, and A. M. Weiner, "Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation," IEEE Trans. Microwave Theory Tech. 56, 710- 719 (2008).
[CrossRef]

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247- 4255 (2006).
[CrossRef]

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832- 846 (2006).
[CrossRef]

J. Lightwave Technol.

Nature Photon.

Q2. J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Li, K. Xu, H. Huang, J. Wu, J. Lin, S. Fu, M. Tang, and P. Shum, "Photonic Pulse Generation and Modulation for Ultra-Wideband-over-Fiber Applications," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThD3.
[PubMed]

J. H. Reed Christopher, An introduction to Ultra Wideband Communication System (Prentice Hall Communications Engineering and Emerging Technologies Series, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental layout of photonic filter. Inset: electrical spectrum of the input Gaussian pulse train.

Fig. 2.
Fig. 2.

Optical pulses normalized before (black line) and after (red line) SMF, (a) positive pulse and (b) negative pulse. Inset graph relationship between time-delay and wavelength.

Fig. 3.
Fig. 3.

Experimental (black line) and theoretical (blue line) (a) electrical transfer function and (b) pulse shape for monocyle pulse. In (c), blue line represents the FCC mask for the corresponding experimental normalized electrical power (black line).

Fig. 4.
Fig. 4.

Experimental (black line) and theoretical (blue line) (a) electrical transfer function and (b) pulse shape for doublet pulse. In (c), blue line represents the FCC mask for the corresponding experimental normalized electrical power (black line).

Fig. 5.
Fig. 5.

Experimental (black line) and theoretical (blue line) (a) electrical transfer function and (b) pulse shape for 4-coefficients pulse. In (c), blue line represents the FCC mask for the corresponding experimental normalized electrical power (black line).

Fig. 6.
Fig. 6.

Original pulses (black line) and inverted pulses (red line) for (a) Monocycle, (b) Doublet and (c) Four coefficients pulse.

Fig. 7.
Fig. 7.

Reference monocycle pulse (a) and monocycle pulse for a (b) negative and (c) positive wavelength detuning around 1.07 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

m k ( t ) = 2 2 [ 1 + ( 1 ) k · ϕ RF ( t ) ] with α RF ( t ) = ϕ RF · e 1 2 ( t T 0 ) 2
S ( ω ω n , k ) = P n π · 1 δω · e [ ( ω ω n , k δω ) 2 ]
β ( ω ) = β 0 + β 1 ( ω ω o ) + 1 2 β 2 ( ω ω o ) 2
P ( z , t ) = n = 1 N + S ( ω ω n , k ) · R k ( ω , t ) 2 with R k ( ω , t ) = + M k ( ω ω ) exp { j [ ( ω ω ) ] t ( β β ) z }
H RF ( Ω ) = H EOM ( Ω ) · H PD ( Ω ) · n = 1 N P n ( 1 ) k e τ n n = 1 N P n · cos ( 1 2 β 2 z Ω 2 ) · e ( β 2 z · δω · Ω 2 ) 2
1 2 β 2 z T o 2 < < 1 1 2 β 2 zδω T o < < 1

Metrics