Abstract

The transmission of normally incident plane wave through an array of subwavelength metallic slits modified by perpendicular cuts has been explored. The cuts in middle of slit affect the even and odd modes of slits in different manners. To the best of our knowledge, this is the first work to investigate the influence of cuts on higher modes of slit, which is quite different from that on the fundamental mode studied in previous papers. Shifting the cuts along the vertical slits, we can get two kinds of resonances, which can be excited when the cuts locate at the center of electric or magnetic antinodes. In addition, we propose a new explanation model, in which we ascribe the resonance to three reasons: the F-P cavity theory, the surface current flow, and the surface charges. Irrespective of even and odd modes, the increase in the length of current flow or decrease in ability of accumulating charges dominates when the cut lies at different locations, which corresponds to a red or blue shift of resonant wavelengths. All calculated results are well explained by our proposed model.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
    [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
  3. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
  4. C. Genet and T. W. Ebbesen, " Light in tiny holes," Nature (London) 445,39-46 (2007).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
  6. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).
  7. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
    [PubMed]
  8. F. Miyamaru and M. Hangyo,"Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons," Phys. Rev. B 71,165408 (2005).
  9. D. X Qu and D. Grischkowsky, "Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays," Phys. Rev. Lett. 93,196804 (2004).
    [PubMed]
  10. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).
  11. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175,165-173 (2000).
  12. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86,5601-5603 (2001).
    [PubMed]
  13. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88,057403 (2002).
    [PubMed]
  14. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).
  15. Q1. K. G. Lee and Q-Han Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95,103902 (2005).
    [PubMed]
  16. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).
  17. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
    [PubMed]
  18. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13,4485-4491 (2005).
    [PubMed]
  19. C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).
  20. P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ /4 impedance matching," Opt. Express 15,6762-6767 (2007).
    [PubMed]
  21. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao,"Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13,6815-6820 (2005).
    [PubMed]
  22. D. B. Shao and S. C. Chen,"Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86,253107 (2005).
  23. Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85,642-644 (2004).
  24. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles,"Transmission of microwaves through a stepped subwavelength slit," Appl. Phys. Lett. 91,251106 (2007).
  25. D. B. Ge and Y. B. Yan, Electromagnetic Algorithm: The Finite-Difference Time-Domain method, (Electronic Science and Technology University Press, 2003)
  26. A. Taflove snd S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, MA, 2005, third edition).
  27. F. I. Baida and D. V. Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
  28. S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68,045415 (2003).
  29. D. B. Shao and S. C. Chen, "Numerical simulation of surface-plasmon- assisted nanolithography," Opt. Express 13,6964-6973 (2005).
    [PubMed]
  30. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, "The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities," J. Appl. Phys. 99,124903 (2006).

2007 (5)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).

C. Genet and T. W. Ebbesen, " Light in tiny holes," Nature (London) 445,39-46 (2007).

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ /4 impedance matching," Opt. Express 15,6762-6767 (2007).
[PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles,"Transmission of microwaves through a stepped subwavelength slit," Appl. Phys. Lett. 91,251106 (2007).

2006 (2)

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, "The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities," J. Appl. Phys. 99,124903 (2006).

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).

2005 (7)

Q1. K. G. Lee and Q-Han Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95,103902 (2005).
[PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).

F. Miyamaru and M. Hangyo,"Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons," Phys. Rev. B 71,165408 (2005).

Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13,4485-4491 (2005).
[PubMed]

D. B. Shao and S. C. Chen, "Numerical simulation of surface-plasmon- assisted nanolithography," Opt. Express 13,6964-6973 (2005).
[PubMed]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao,"Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13,6815-6820 (2005).
[PubMed]

D. B. Shao and S. C. Chen,"Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86,253107 (2005).

2004 (4)

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85,642-644 (2004).

D. X Qu and D. Grischkowsky, "Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays," Phys. Rev. Lett. 93,196804 (2004).
[PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
[PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
[PubMed]

2003 (5)

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).

F. I. Baida and D. V. Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).

S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68,045415 (2003).

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88,057403 (2002).
[PubMed]

2001 (1)

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86,5601-5603 (2001).
[PubMed]

2000 (1)

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175,165-173 (2000).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175,165-173 (2000).

Baida, F. I.

F. I. Baida and D. V. Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).

Bolivar, P. H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88,057403 (2002).
[PubMed]

Chang, Y.-T.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).

Chavel, P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).

Chen, J.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

Chen, S. C.

D. B. Shao and S. C. Chen,"Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86,253107 (2005).

D. B. Shao and S. C. Chen, "Numerical simulation of surface-plasmon- assisted nanolithography," Opt. Express 13,6964-6973 (2005).
[PubMed]

Cheng, C.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
[PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
[PubMed]

Dong, X. C.

Du, C. L.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, " Light in tiny holes," Nature (London) 445,39-46 (2007).

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).

Fan, Y. X.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

Gao, H. T.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, " Light in tiny holes," Nature (London) 445,39-46 (2007).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).

Ginzburg, P.

Gray, S. K.

S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68,045415 (2003).

Grischkowsky, D.

D. X Qu and D. Grischkowsky, "Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays," Phys. Rev. Lett. 93,196804 (2004).
[PubMed]

Hangyo, M.

F. Miyamaru and M. Hangyo,"Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons," Phys. Rev. B 71,165408 (2005).

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles,"Transmission of microwaves through a stepped subwavelength slit," Appl. Phys. Lett. 91,251106 (2007).

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, "The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities," J. Appl. Phys. 99,124903 (2006).

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
[PubMed]

Hugonin, J. P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).

Kim, H. K.

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85,642-644 (2004).

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).

Kupka, T.

S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68,045415 (2003).

Kurz, H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).

Labeke, D. V.

F. I. Baida and D. V. Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).

Lalanne, P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88,057403 (2002).
[PubMed]

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175,165-173 (2000).

Lee, K. G.

Q1. K. G. Lee and Q-Han Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95,103902 (2005).
[PubMed]

Lee, S.-C.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles,"Transmission of microwaves through a stepped subwavelength slit," Appl. Phys. Lett. 91,251106 (2007).

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, "The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities," J. Appl. Phys. 99,124903 (2006).

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
[PubMed]

Luo, X. G.

Mansuripur, M.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).

Meng, C.-Y.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).

Miyamaru, F.

F. Miyamaru and M. Hangyo,"Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons," Phys. Rev. B 71,165408 (2005).

Moloney, J.

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
[PubMed]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).

Orenstein, M.

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175,165-173 (2000).

Preist, T. W.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
[PubMed]

Qu, D. X

D. X Qu and D. Grischkowsky, "Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays," Phys. Rev. Lett. 93,196804 (2004).
[PubMed]

Ren, F. F.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

Rivas, J. G.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).

Rodier, J. C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles,"Transmission of microwaves through a stepped subwavelength slit," Appl. Phys. Lett. 91,251106 (2007).

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, "The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities," J. Appl. Phys. 99,124903 (2006).

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
[PubMed]

Sauvan, C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).

Schotsch, C.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).

Shao, D. B.

D. B. Shao and S. C. Chen, "Numerical simulation of surface-plasmon- assisted nanolithography," Opt. Express 13,6964-6973 (2005).
[PubMed]

D. B. Shao and S. C. Chen,"Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86,253107 (2005).

Shi, H. F.

Suckling, J. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
[PubMed]

Sun, Z.

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85,642-644 (2004).

Takakura, Y.

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86,5601-5603 (2001).
[PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).

Tsai, M.-W.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).

Wang, C. T.

Wang, H. T.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).

Wu, Q. Y.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

Xie, Y.

Xu, J.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

Zakharian, A.

Appl. Phys. Lett. (5)

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).

D. B. Shao and S. C. Chen,"Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86,253107 (2005).

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85,642-644 (2004).

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles,"Transmission of microwaves through a stepped subwavelength slit," Appl. Phys. Lett. 91,251106 (2007).

J. Appl. Phys. (1)

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, "The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities," J. Appl. Phys. 99,124903 (2006).

Nature (London) (4)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).

C. Genet and T. W. Ebbesen, " Light in tiny holes," Nature (London) 445,39-46 (2007).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).

Opt. Commun. (1)

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175,165-173 (2000).

Opt. Express (4)

Phys. Rev. B (6)

F. I. Baida and D. V. Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).

S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68,045415 (2003).

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).

F. Miyamaru and M. Hangyo,"Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons," Phys. Rev. B 71,165408 (2005).

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).

Phys. Rev. Lett. (6)

D. X Qu and D. Grischkowsky, "Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays," Phys. Rev. Lett. 93,196804 (2004).
[PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004).
[PubMed]

Q1. K. G. Lee and Q-Han Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95,103902 (2005).
[PubMed]

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86,5601-5603 (2001).
[PubMed]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88,057403 (2002).
[PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004).
[PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002).
[PubMed]

Other (2)

D. B. Ge and Y. B. Yan, Electromagnetic Algorithm: The Finite-Difference Time-Domain method, (Electronic Science and Technology University Press, 2003)

A. Taflove snd S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, MA, 2005, third edition).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of a unit cell of the period metallic grating.

Fig. 2.
Fig. 2.

Magnitudes of electric and magnetic field distributions for three transmission peaks. The incident wavelengths are 972nm in (a) and (b), 1180nm in (c) and (d), and 1563nm in (e) and (f), respectively. The numbers of color scale bar are magnitudes of field amplitudes normalized to the illuminating electric field.

Fig. 3.
Fig. 3.

Transmission as a function of wavelength and cuts depth h 3. The width of cuts is w 2 = 270nm, and the thickness is h 2 = 90nm. The dashed lines mark the positions of resonant wavelengths for the bare array of vertical slits. The number of the color scale bar is the transmittance through the metallic gratings.

Fig. 4.
Fig. 4.

Magnitudes of electric and magnetic field distributions for three transmission peaks labeled by R1, R2, and R3 in Fig. 3. Subgraphs (a) and (b) are field distributions for peak labeled by R1; (c) and (d) for R2; (e) and (f) for R3. The numbers of color scale bar are magnitudes of field amplitudes normalized to the illuminating electric field.

Fig. 5.
Fig. 5.

Magnitudes of electric and magnetic field distributions for the two transmission peaks labeled by L1 and L2 in Fig. 3. Subgraphs (a) and (b) are field distribution for peak labeled by L1, (c) and (d) are for L2. The numbers of color scale bar are magnitudes of field amplitudes normalized to the illuminating electric field.

Fig. 6.
Fig. 6.

Dependences of transmission spectra on the thickness of cuts h 2 (a) (h 3 = 900nm, w 2 = 270nm) and on the width w 2 (b) (h 3 = 900nm, h 2 = 90nm). Each curve has been shifted vertically by +0.3 with respect to the previous one. Three dashed lines mark the resonant wavelengths of the bare slit array.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = 1 ω p 3 ω ( ω + ) ,
2 k L FP + θ = 2 ,
L eff = L FP + δ J δ Q
n × H = J
n · D = σ

Metrics