Abstract

Bicomponent composite material mixture and single beam photo polymerization method are used to create a micro lens with W -like distribution of refractive index; the flat analogy of the “Schmidt” lens. The choice of two key components of the mixture, which change their mutual miscibility after the photo polymerization of one of them, allows the creation of stable spatial modulation of the refractive index.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Moore, "Gradient-index optics: a review," Appl. Opt. 19, 1035-1038 (1980).
    [CrossRef] [PubMed]
  2. G. Lemaitre, "New Procedure for Making Schmidt Corrector Plates," Appl. Opt. 11, 1630-1636 (1972).
    [CrossRef] [PubMed]
  3. J. L. Coutaz, P. C. Jaussaud, and G. H. Chartier, "Realization of Schmidt plates by ion exchange in glass," Appl. Opt. 21, 1066-1068 (1982).
    [CrossRef] [PubMed]
  4. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. -J. Lougnot, "Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization," Appl. Opt. 40, 5860-5871 (2001).
    [CrossRef]
  5. K. Saravanamuttu and M. P. Andrews, "Visible laser self-focusing in hybrid glass planar waveguides," Opt. Lett. 27, 1342-1344 (2002).
    [CrossRef]
  6. M. Kagami, T. Yamashita, and H. Ito, "Light-induced self-written three-dimensional optical waveguide," Appl. Phys. Lett. 79, 1079-1081 (2001).
    [CrossRef]
  7. A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, "Self-written gradient double clad like optical guiding channels of high stability," Appl. Phys. Lett. 91, 111912 (2007).
    [CrossRef]
  8. <other>. R. Mehra, "Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures," Proc. Indian Acad. Sci. (Chem. Sci.), 115, 147-154 (2003).</other>
    [CrossRef]

2007 (1)

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, "Self-written gradient double clad like optical guiding channels of high stability," Appl. Phys. Lett. 91, 111912 (2007).
[CrossRef]

2002 (1)

2001 (2)

1982 (1)

1980 (1)

1972 (1)

Andrews, M. P.

Bachelot, R.

Birabassov, R.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, "Self-written gradient double clad like optical guiding channels of high stability," Appl. Phys. Lett. 91, 111912 (2007).
[CrossRef]

Chartier, G. H.

Coutaz, J. L.

Deloeil, D.

Ecoffet, C.

Galstian, T.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, "Self-written gradient double clad like optical guiding channels of high stability," Appl. Phys. Lett. 91, 111912 (2007).
[CrossRef]

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, "Light-induced self-written three-dimensional optical waveguide," Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Jaussaud, P. C.

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, "Light-induced self-written three-dimensional optical waveguide," Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Lemaitre, G.

Lougnot, D. -J.

Moore, D. T.

Royer, P.

Saravanamuttu, K.

Tork, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, "Self-written gradient double clad like optical guiding channels of high stability," Appl. Phys. Lett. 91, 111912 (2007).
[CrossRef]

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, "Light-induced self-written three-dimensional optical waveguide," Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Zohrabyan, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, "Self-written gradient double clad like optical guiding channels of high stability," Appl. Phys. Lett. 91, 111912 (2007).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

M. Kagami, T. Yamashita, and H. Ito, "Light-induced self-written three-dimensional optical waveguide," Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, "Self-written gradient double clad like optical guiding channels of high stability," Appl. Phys. Lett. 91, 111912 (2007).
[CrossRef]

Opt. Lett. (1)

Other (1)

<other>. R. Mehra, "Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures," Proc. Indian Acad. Sci. (Chem. Sci.), 115, 147-154 (2003).</other>
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the experimental set-up.

Fig. 2.
Fig. 2.

Cross symbols show the variation of the diffracted probe signal (transmitted through the sample and the diaphragm) and its measurement error versus the position of the sample (when the sample is moved in the transverse direction). The intensity profiles (measured at the position of the sample) of the polymerizing and probe laser beams are also presented by filled squares and filled triangles, respectively (the corresponding relative error is ≈5%).

Fig. 3.
Fig. 3.

Schematic representation of the experimental setup with Shack-Hartmann sensor.

Fig. 4.
Fig. 4.

The 2D profile (bottom right photo) and horizontal & vertical histograms (top and left curves) of the phase of the probe beam passed through the laser polymerized zone, measured by a Shack-Hartman sensor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( n 2 1 ) / ( n 2 + 2 ) = ϕ 1 ( n 1 2 1 ) / ( n 1 2 + 2 ) + ϕ 2 ( n 2 2 1 ) / ( n 2 2 + 2 )

Metrics