Abstract

We investigate a novel design for all-solid large mode area (LMA) leakage channel fibers (LCFs) for high-power Yb-doped fiber lasers and amplifiers, based on a single down-doped-silica rod ring surrounding a seven-cell pure-silica core, aiming for effectively single-mode behavior and low bending loss characteristics. Through detailed numerical simulations based on the finite element method (FEM), we find that the proposed all-solid LMA-LCFs, having a seven-cell core and two different sizes of down-doped rods, can achieve sufficient differential mode loss and much lower bending loss, as compared with a previously-reported LCF with a one-cell core and six large down-doped-silica rods.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
    [CrossRef]
  2. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Opt. Lett. 31, 226-228 (2006).
    [CrossRef] [PubMed]
  3. J. M. Fini, "Design of large-mode-area amplifier fibers resistant to bend-induced distortion," J. Opt. Soc. Am. B 24, 1669-1676 (2007).
    [CrossRef]
  4. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
    [CrossRef]
  5. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2003).
    [CrossRef]
  6. W. S. Wong, X. Peng, J. M. McLanghlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).
    [CrossRef] [PubMed]
  7. L. Dong, J. Li, and X. Peng, "Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 μm2," Opt. Express 14, 11512-11519 (2006).
    [CrossRef] [PubMed]
  8. X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," Opt. Lett. 32, 358-360 (2007).
    [CrossRef] [PubMed]
  9. L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Am. B 24, 1689-1697 (2007).
    [CrossRef]
  10. L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M.E. Fermann, "Robust and practical optical fibers for single mode operation with core diameters up to 170 μm." presented at Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference 2008 (CLEO/QELS 2008), San Jose, Calif., May 2008.
  11. L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009).
    [CrossRef]
  12. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  13. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006).
    [CrossRef] [PubMed]
  14. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region," Opt. Express 15, 1794-1803 (2007).
    [CrossRef] [PubMed]

2009 (1)

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009).
[CrossRef]

2007 (4)

2006 (3)

2005 (1)

2004 (1)

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
[CrossRef]

2003 (1)

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2003).
[CrossRef]

2002 (1)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

2001 (1)

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

Clarkson, W. A.

Cooper, L. J.

Dong, L.

Fini, J. M.

Folkenberg, J. R.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2003).
[CrossRef]

Fu, L.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

Jeong, Y.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
[CrossRef]

Kakihara, K.

Kono, N.

Koshiba, M.

Li, J.

McKay, H. A.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009).
[CrossRef]

McLanghlin, J. M.

Mortensen, N. A.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2003).
[CrossRef]

Nielsen, M. D.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2003).
[CrossRef]

Nilsson, J.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
[CrossRef]

Payne, D. N.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
[CrossRef]

Peng, X.

Sahu, J. K.

P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Opt. Lett. 31, 226-228 (2006).
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
[CrossRef]

Saitoh, K.

Tsuchida, Y.

Wang, P.

Winful, H. G.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Wong, W. S.

Wu, T. W.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Electron. Lett. (2)

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
[CrossRef]

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (3)

Other (1)

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M.E. Fermann, "Robust and practical optical fibers for single mode operation with core diameters up to 170 μm." presented at Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference 2008 (CLEO/QELS 2008), San Jose, Calif., May 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic cross-section of all-glass leakage channel fibers formed by (a) 6 fluorine-doped silica rods surrounding a one-cell silica core (LCF1) and (b) 12 fluorine-doped silica rods surrounding a seven-cell silica core (LCF7).

Fig. 2.
Fig. 2.

Effective area of FM at 1064 nm as a function of the design parameters Λ and d/Λ for (a) LCF1 and (b) LCF7. The curves denote conditions on A eff = 1400 μm2 (white), CL 2nd = 1 dB/m (solid black), and CL fund = 0.1 dB/m (dashed black).

Fig. 3.
Fig. 3.

Schematic depiction of the modified types of LCF7, having fluorine-doped silica rods of two different diameters d 1 and d 2.

Fig. 4.
Fig. 4.

Effective area of FM at 1064 nm as a function of Λ and d 2/Λ for (a) LCF7-1 (b) LCF7-2, and (c) LCF7-3, for constant d 1/Λ = 0.95.

Fig. 5.
Fig. 5.

Bending loss in dB/m as a function of the bending radius in cm at 1064 nm. The red curve corresponds to the LCF1 with Λ = 42.3 μm, d/Λ = 0.81, while the yellow and blue curves correspond to the LCF7-2 with Λ = 19.4 μm, d 1/Λ = 0.95, d 2/Λ = 0.82 and LCF7-3 with Λ = 19.2 μm, d 1/Λ = 0.95, d 2/Λ = 0.82, respectively.

Fig. 6.
Fig. 6.

Simulated optical field distributions of FM at 1064 nm in the bent LCF1 (Λ = 42.3 μm, d/Λ = 0.81), LCF7-2 (Λ = 19.4 μm, d 1/Λ = 0.95, d 2/Λ = 0.82), and LCF7-3 (Λ = 19.2 μm, d 1/Λ = 0.95, d 2/Λ = 0.82) fibers, with a 15-cm bending radius for both A-A’ and B-B’ bend planes. For the B-B’ bend plane simulation, the fiber is rotated by 90 degrees.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ = n 2 n F 2 2 n 2 × 100 [ % ] ,

Metrics