Abstract

We report an optical single-frequency synthesizer at the 1.55 μm telecommunications band. Output from a continuous-wave external cavity diode laser is frequency doubled and phase locked to a predetermined component of a Ti:S laser frequency comb. The synthesizer is capable of generating a single user-specified frequency from an atomic time base within the 192–196 THz gain bandwidth of an erbium-doped fiber amplifier. By tuning the repetition rate of the femtosecond laser the synthesized optical frequency can be swept with sub-kilohertz step size. Frequency sweeps of several GHz are realized by automatically re-locking the diode laser to adjacent comb components during frequency sweep. We demonstrate the operation of the device by presenting results of Doppler-free spectroscopy on acetylene using synthesized frequencies.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  2. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  3. J. D. Jost, J. L. Hall, and J. Ye, "Continuously tunable, precise, single frequency optical signal generator," Opt. Express 10, 515-520 (2002).
    [PubMed]
  4. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, "Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb," Opt. Lett. 30, 2323-2325 (2005).
    [CrossRef] [PubMed]
  5. H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, "Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer," Appl. Opt. 45, 4910-4915 (2006).
    [CrossRef] [PubMed]
  6. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
    [CrossRef]
  7. S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
    [CrossRef] [PubMed]
  8. T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
    [CrossRef] [PubMed]
  9. Y.-J. Kim, J. Jin, Y. Kim, S. Hyun, and S.-W. Kim, "A wide-range optical frequency generator based on the frequency comb of a femtosecond laser," Opt. Express 16, 258-264 (2008).
    [CrossRef] [PubMed]
  10. H. Y. Ryu, S. H. Lee, W. K. Lee, H. S. Moon, and H. S. Suh, "Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb," Opt. Express 16, 2867-2873 (2008).
    [CrossRef] [PubMed]
  11. M. Merimaa, K. Nyholm, M. Vainio, and A. Lassila, "Traceability of laser frequency calibrations at MIKES," IEEE Trans. Instrum. Meas. 56, 500-504 (2007).
    [CrossRef]
  12. B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G.  Jørgensen, "Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12, 4999-5004 (2004).
    [CrossRef] [PubMed]
  13. R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005). With revision by the Working Group on the Mise en Pratique (MEP2005).
    [CrossRef]
  14. V. Ahtee, M. Merimaa, and K. Nyholm, "Fiber-based acetylene-stabilized laser," IEEE Trans. Instrum. Meas.(In press, doi: 10.1109/TIM.2008.2008476)
  15. C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, "Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach," Phys. Rev. A 14, 236-263 (1976).
    [CrossRef]

2008 (2)

2007 (1)

M. Merimaa, K. Nyholm, M. Vainio, and A. Lassila, "Traceability of laser frequency calibrations at MIKES," IEEE Trans. Instrum. Meas. 56, 500-504 (2007).
[CrossRef]

2006 (4)

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, "Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer," Appl. Opt. 45, 4910-4915 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2002 (1)

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

1976 (1)

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, "Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach," Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Ahtee, V.

V. Ahtee, M. Merimaa, and K. Nyholm, "Fiber-based acetylene-stabilized laser," IEEE Trans. Instrum. Meas.(In press, doi: 10.1109/TIM.2008.2008476)

Bitou, Y.

Bordé, C. J.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, "Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach," Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Feder, K.

Felder, R.

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005). With revision by the Working Group on the Mise en Pratique (MEP2005).
[CrossRef]

Fortier, T. M.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

Fox, R. W.

Hall, J. L.

J. D. Jost, J. L. Hall, and J. Ye, "Continuously tunable, precise, single frequency optical signal generator," Opt. Express 10, 515-520 (2002).
[PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, "Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach," Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Hänsch, T. W.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Hollberg, L.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Hong, F.-L.

Hummer, D. G.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, "Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach," Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Hyun, S.

Ikegami, T.

Inaba, H.

Jin, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Jørgensen, C. G.

Jost, J. D.

Kim, E. B.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Kunasz, C. V.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, "Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach," Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Kwon, T. Y.

Lassila, A.

M. Merimaa, K. Nyholm, M. Vainio, and A. Lassila, "Traceability of laser frequency calibrations at MIKES," IEEE Trans. Instrum. Meas. 56, 500-504 (2007).
[CrossRef]

Le Coq, Y.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

Lee, S. H.

Lee, W. K.

Matsumoto, H.

Merimaa, M.

M. Merimaa, K. Nyholm, M. Vainio, and A. Lassila, "Traceability of laser frequency calibrations at MIKES," IEEE Trans. Instrum. Meas. 56, 500-504 (2007).
[CrossRef]

V. Ahtee, M. Merimaa, and K. Nyholm, "Fiber-based acetylene-stabilized laser," IEEE Trans. Instrum. Meas.(In press, doi: 10.1109/TIM.2008.2008476)

Minoshima, K.

Moon, H. S.

Newbury, N. R.

Nicholson, J. W.

Nyholm, K.

M. Merimaa, K. Nyholm, M. Vainio, and A. Lassila, "Traceability of laser frequency calibrations at MIKES," IEEE Trans. Instrum. Meas. 56, 500-504 (2007).
[CrossRef]

V. Ahtee, M. Merimaa, and K. Nyholm, "Fiber-based acetylene-stabilized laser," IEEE Trans. Instrum. Meas.(In press, doi: 10.1109/TIM.2008.2008476)

Oates, C. W.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

Onae, A.

Ortega, D.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

Park, C. Y.

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Park, S. E.

S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Park, Y.-H.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Ryu, H. Y.

Schibli, T. R.

Stalnaker, J. E.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Suh, H. S.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Vainio, M.

M. Merimaa, K. Nyholm, M. Vainio, and A. Lassila, "Traceability of laser frequency calibrations at MIKES," IEEE Trans. Instrum. Meas. 56, 500-504 (2007).
[CrossRef]

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Washburn, B. R.

Westbrook, P. S.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Ye, J.

Yee, D. S.

Yoon, T. H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

M. Merimaa, K. Nyholm, M. Vainio, and A. Lassila, "Traceability of laser frequency calibrations at MIKES," IEEE Trans. Instrum. Meas. 56, 500-504 (2007).
[CrossRef]

V. Ahtee, M. Merimaa, and K. Nyholm, "Fiber-based acetylene-stabilized laser," IEEE Trans. Instrum. Meas.(In press, doi: 10.1109/TIM.2008.2008476)

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, "Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach," Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Phys. Rev. Lett. (2)

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, "Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb," Phys. Rev. Lett. 97, 163905 (2006).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (1)

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005). With revision by the Working Group on the Mise en Pratique (MEP2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic block diagram of the optical frequency synthesizer.

Fig. 2.
Fig. 2.

Tuning of the synthesized frequency. The left part of the figure illustrates the stepping of the repetition rate and the right part that of the optical frequencies. 1) The second harmonic of the synthesized frequency is locked to the nth frequency component of the comb. 2-3) By stepping the repetition rate, the nth component is shifted to the initial position of the (n+1) th component. 4) The repetition rate is set back to the start value and the synthesizer locks to the (n+1) th component.

Fig. 3.
Fig. 3.

Experimental arrangement for Doppler-free spectroscopy on acetylene. The blocks that are part of the synthesizer are shaded in gray. A=Attenuation, PZT = piezoelectric transducer, WDM = wavelength division multiplexer.

Fig. 4.
Fig. 4.

(a). Intensity stability of the synthesizer: Detected signal from 23 consecutive 8 MHz frequency sweeps each consisting of 100 frequency steps. (b) Doppler-broadened P(16)-transition. (c) Doppler-free line shape of the P(16)-transition. Lorentzian fit (in red) gives a center frequency 9 kHz below the CIPM value. τ = integration time per measurement point, Δf = frequency step size, N = number of averaged frequency sweeps.

Metrics