Abstract

In photoacoustic imaging, the intensity of photoacoustic signal induced by optical absorption in biological tissue is proportional to light energy deposition, which is the product of the absorption coefficient and the local light fluence. Because tissue optical properties are highly dependent on the wavelength, the spectrum of the local light fluence at a target tissue beneath the sample surface is different than the spectrum of the incident light fluence. Therefore, quantifying the tissue optical absorption spectrum by using a photoacoustic technique is not feasible without the knowledge of the local light fluence. In this work, a highly accurate photoacoustic measurement of the subsurface tissue optical absorption spectrum has been achieved for the first time by introducing an extrinsic optical contrast agent with known optical properties. From the photoacoustic measurements with and without the contrast agent, a quantified measurement of the chromophore absorption spectrum can be realized in a strongly scattering medium. Experiments on micro-flow vessels containing fresh canine blood buried in phantoms and chicken breast tissues were carried out in a wavelength range from 680 nm to 950 nm. Spectroscopic photoacoustic measurements of both oxygenated and deoxygenated blood specimens presented an improved match with the references when employing this technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
    [CrossRef] [PubMed]
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
    [CrossRef] [PubMed]
  3. S. Yang, Da. Xing, Q. Zhou, L. Xiang, and Y. Lao, "Functional imaging of cerebrovascular in small animals using high resolution photoacoustic tomography," Med. Phys. 34, 3294-3301 (2007).
    [CrossRef] [PubMed]
  4. C. G. A. Hoelen, F. F. M. de Muil, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998).
    [CrossRef]
  5. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
    [CrossRef]
  6. X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006).
    [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
    [CrossRef] [PubMed]
  8. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, "Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein," Opt. Lett. 31, 1827-1829 (2006).
    [CrossRef] [PubMed]
  9. G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).
  10. B. Liu, D. Reinecke, R. A. Kruger, and K. M. Stantz, "Phantom and in vivo measurements of hemoglobin concentration and oxygen saturation using PCT-S small animal scanner," Proc. SPIE 6437, 64371X1- 64371X9 (2007).
  11. K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
    [CrossRef]
  12. D. Yang, Da. Xing, S. Yang, and L. Xiang, "Fast full view photoacoustic imaging by combined scanning with a linear transducer array," Opt. Express 15, 15566 - 15575 (2007).
    [CrossRef] [PubMed]
  13. Y. Lao, Da Xing, S. Yang, and L. Xiang, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
    [CrossRef] [PubMed]
  14. L. Xiang, Da. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, "Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor," J. Biomed. Opt. 12, 014001 (2007)
    [CrossRef] [PubMed]
  15. P-C. Lie, C-R. C. Wang, D-B. Shieh, C-W. Wei, C-K. Liao, C. Poe, S. Jhan, A-A. Ding, and Y-N. Wu, "In vivo photoacoustic molecular imaging with simulataneous multiple selective targeting using antibody-conjugated gold nanorods," Opt. Express 16, 18605- 18615 (2008).
    [CrossRef]
  16. X. Wang, D. L. Chamberland, and D. A. Jamadar, "Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis," Opt. Lett. 32, 3002-3004 (2007).
    [CrossRef] [PubMed]
  17. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Laser based optoacoustic imaging in biological tissues," Proc. SPIE 2134A, 122 - 128 (1994).
  18. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995).
    [CrossRef] [PubMed]
  19. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  20. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Opt. Lett. 29,730-732 (2004).
    [CrossRef] [PubMed]
  21. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
    [CrossRef]
  22. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
    [CrossRef] [PubMed]
  23. J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
    [CrossRef]
  24. K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007).
    [CrossRef]
  25. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
    [CrossRef]
  26. S. A. Prahl, "Optical absorption of hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin/.
  27. S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999).
    [CrossRef]
  28. Z. Zhao and R. Myllylä, "The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids," Meas. Sci. Technol. 12, 2172-2177 (2001).
    [CrossRef]
  29. Z. Zhao and R. Myllylä, "Scattering photoacoustic study of weakly-absorbing substances in aqueous suspensions," J. Phys. IV France 137, 385-390 (2006).
    [CrossRef]

2008 (2)

Y. Lao, Da Xing, S. Yang, and L. Xiang, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

Y. Lao, Da Xing, S. Yang, and L. Xiang, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

P-C. Lie, C-R. C. Wang, D-B. Shieh, C-W. Wei, C-K. Liao, C. Poe, S. Jhan, A-A. Ding, and Y-N. Wu, "In vivo photoacoustic molecular imaging with simulataneous multiple selective targeting using antibody-conjugated gold nanorods," Opt. Express 16, 18605- 18615 (2008).
[CrossRef]

2007 (9)

X. Wang, D. L. Chamberland, and D. A. Jamadar, "Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis," Opt. Lett. 32, 3002-3004 (2007).
[CrossRef] [PubMed]

L. Xiang, Da. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, "Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor," J. Biomed. Opt. 12, 014001 (2007)
[CrossRef] [PubMed]

D. Yang, Da. Xing, S. Yang, and L. Xiang, "Fast full view photoacoustic imaging by combined scanning with a linear transducer array," Opt. Express 15, 15566 - 15575 (2007).
[CrossRef] [PubMed]

S. Yang, Da. Xing, Q. Zhou, L. Xiang, and Y. Lao, "Functional imaging of cerebrovascular in small animals using high resolution photoacoustic tomography," Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
[CrossRef] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

2006 (6)

Z. Zhao and R. Myllylä, "Scattering photoacoustic study of weakly-absorbing substances in aqueous suspensions," J. Phys. IV France 137, 385-390 (2006).
[CrossRef]

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, "Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein," Opt. Lett. 31, 1827-1829 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

2004 (2)

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Opt. Lett. 29,730-732 (2004).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

2003 (3)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

2001 (1)

Z. Zhao and R. Myllylä, "The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids," Meas. Sci. Technol. 12, 2172-2177 (2001).
[CrossRef]

1999 (1)

S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999).
[CrossRef]

1998 (1)

1995 (1)

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

1994 (1)

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Laser based optoacoustic imaging in biological tissues," Proc. SPIE 2134A, 122 - 128 (1994).

Appledorn, C. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

Bornhop, D. J.

Cao, M.

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

Chamberland, D. L.

Da Xing, Y.

Y. Lao, Da Xing, S. Yang, and L. Xiang, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

de Muil, F. F. M.

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Dekker, A.

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

Ding, A-A.

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

Esenaliev, R. O.

Fang, Y. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Gill, K. L.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Goulet, T.

S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999).
[CrossRef]

Hoelen, C. G. A.

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Houde, D.

S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999).
[CrossRef]

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Laser based optoacoustic imaging in biological tissues," Proc. SPIE 2134A, 122 - 128 (1994).

Jamadar, D. A.

Jhan, S.

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Kruger, R.

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

Kruger, R. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Ku, G.

X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Opt. Lett. 29,730-732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Lao, Y.

Y. Lao, Da Xing, S. Yang, and L. Xiang, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

Li, M.

G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).

Liao, C-K.

Lie, P-C.

Liu, B.

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

Liu, P.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Lungfu, G. F.

G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).

Marengo, S.

S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999).
[CrossRef]

Maslov, K.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Miller, K.

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

Miller, K. D.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Myllylä, R.

Z. Zhao and R. Myllylä, "Scattering photoacoustic study of weakly-absorbing substances in aqueous suspensions," J. Phys. IV France 137, 385-390 (2006).
[CrossRef]

Z. Zhao and R. Myllylä, "The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids," Meas. Sci. Technol. 12, 2172-2177 (2001).
[CrossRef]

O’Neal, D. P.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Laser based optoacoustic imaging in biological tissues," Proc. SPIE 2134A, 122 - 128 (1994).

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Patrikeev, I. A.

Pépin, C.

S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999).
[CrossRef]

Petrov, Y. Y.

Petrova, I. Y.

Poe, C.

Pongers, R.

Prough, D. S.

Reinecke, D.

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Shieh, D-B.

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
[CrossRef] [PubMed]

Stantz, K. M.

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Stoica, G.

G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Opt. Lett. 29,730-732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Laser based optoacoustic imaging in biological tissues," Proc. SPIE 2134A, 122 - 128 (1994).

Wang, C-R. C.

Wang, L. V.

G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Opt. Lett. 29,730-732 (2004).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, D. L. Chamberland, and D. A. Jamadar, "Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis," Opt. Lett. 32, 3002-3004 (2007).
[CrossRef] [PubMed]

X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Opt. Lett. 29,730-732 (2004).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Wegiel, M. A.

Wei, C-W.

Wu, Y-N.

Xiang, L.

L. Xiang, Da. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, "Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor," J. Biomed. Opt. 12, 014001 (2007)
[CrossRef] [PubMed]

Xie, X.

G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).

X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Yang, D.

Yang, S.

S. Yang, Da. Xing, Q. Zhou, L. Xiang, and Y. Lao, "Functional imaging of cerebrovascular in small animals using high resolution photoacoustic tomography," Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Zhang, H. F.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Zhao, Z.

Z. Zhao and R. Myllylä, "Scattering photoacoustic study of weakly-absorbing substances in aqueous suspensions," J. Phys. IV France 137, 385-390 (2006).
[CrossRef]

Z. Zhao and R. Myllylä, "The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids," Meas. Sci. Technol. 12, 2172-2177 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999).
[CrossRef]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Int. J. Oncology (1)

G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).

Inverse Probl. (1)

K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007).
[CrossRef]

J. Biomed. Opt. (2)

L. Xiang, Da. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, "Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor," J. Biomed. Opt. 12, 014001 (2007)
[CrossRef] [PubMed]

X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

J. Phys. IV France (1)

Z. Zhao and R. Myllylä, "Scattering photoacoustic study of weakly-absorbing substances in aqueous suspensions," J. Phys. IV France 137, 385-390 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

Z. Zhao and R. Myllylä, "The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids," Meas. Sci. Technol. 12, 2172-2177 (2001).
[CrossRef]

Med. Phys. (2)

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

S. Yang, Da. Xing, Q. Zhou, L. Xiang, and Y. Lao, "Functional imaging of cerebrovascular in small animals using high resolution photoacoustic tomography," Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Mol. Imaging (1)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Nano Lett. (1)

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Med. Biol. (3)

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007).
[CrossRef] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

Y. Lao, Da Xing, S. Yang, and L. Xiang, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Laser based optoacoustic imaging in biological tissues," Proc. SPIE 2134A, 122 - 128 (1994).

K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Other (2)

S. A. Prahl, "Optical absorption of hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin/.

B. Liu, D. Reinecke, R. A. Kruger, and K. M. Stantz, "Phantom and in vivo measurements of hemoglobin concentration and oxygen saturation using PCT-S small animal scanner," Proc. SPIE 6437, 64371X1- 64371X9 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for SPAT measurement of tissue optical absorption spectrum. NDF: neutral density filter.

Fig. 2.
Fig. 2.

Optical absorption spectrum of the contrast agent (IR dye FHI90011S) measured by SPAT.

Fig. 3.
Fig. 3.

Typical photoacoustic signal measured from the vessel. Inset shows the typical photodiode signal of the laser pulse.

Fig. 4.
Fig. 4.

Optical absorption spectra of an oxygenated (circle) and a deoxygenated (square) canine blood specimens obtained with the SPAT system in comparison with the references (solid curves). The blood oxygen saturation (SO2) were 1.00 for the oxygenated blood specimen and 0.33 for the deoxygenated blood specimen.

Fig. 5.
Fig. 5.

Photoacoustic spectra of an oxygenated (circle) and a deoxygenated (square) canine blood specimens embedded in a scattering medium made from diluted whole milk. The blood oxygen saturation (SO2) were 0.97 for the oxygenated blood specimen and 0.10 for the deoxygenated blood specimen. (a) and (c) are the PA spectra before compensation and (b) and (d) are the PA spectra after compensation by introducing the optical contrast agent. Solid curves represent the references.

Fig. 6.
Fig. 6.

Photoacoustic spectra of an oxygenated (circle) and a deoxygenated (square) canine blood specimens embedded 3-mm deep in a chicken breast tissue. The blood oxygen saturation (SO2) were 0.98 for the oxygenated blood specimen and 0.27 for the deoxygenated blood specimen. (a) and (c) are the PA spectra before compensation and (b) and (d) are the PA spectra after compensation by introducing the optical contrast agent. Solid curves represent the references.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( λ ) = ( λ ) C T ϕ ( λ ) ,
ε ( λ ) = ε HbO 2 ( λ ) S O 2 + ε Hb ( λ ) ( 1 S O 2 ) .
P 2 ( λ ) = ( λ ) C T ϕ ( λ ) + K ε dye C dye ( λ ) ϕ ( λ ) ,
ϕ ( λ ) = P 2 ( λ ) P 1 ( λ ) K ε dye ( λ ) C dye .
ε ( λ ) = P 1 ε dye ( λ ) C dye C T [ P 2 ( λ ) P 1 ( λ ) ] .
ε ( λ ) = Q ( λ ) C dye C T ,
ε HbO 2 ( λ 1 ) S O 2 + ε Hb ( λ 1 ) ( 1 S O 2 ) = Q ( λ 1 ) C dye C T ,
nd ε HbO 2 ( λ 2 ) S O 2 + ε Hb ( λ 2 ) ( 1 S O 2 ) = Q ( λ 2 ) C dye C T .
S O 2 = Q ( λ 2 ) ε Hb ( λ 1 ) Q ( λ 1 ) ε HbO 2 ( λ 2 ) Q ( λ 1 ) [ ε HbO 2 ( λ 2 ) ε Hb ( λ 2 ) ] Q ( λ 2 ) [ ε HbO 2 ( λ 1 ) ε Hb ( λ 1 ) ] .
ε HbO 2 ( λ ) C HbO 2 + ε Hb ( λ ) C Hb = Q ( λ ) C dye .

Metrics