Abstract

Periodically poled titanium-diffusion waveguide was fabricated in near-stoichiometric MgO:LiNbO3 wafers. The characteristics of the device were examined by pump-probe second harmonic generation (SHG). The device shows very high resistance to photorefractive damage at room temperature. The wavelength tuning of the converted difference frequency (DF) wave can be achieved from 1450 to 1542 nm by tuning pump wave and signal wave. The wavelength conversion efficiency was measured to be -7.3 dB with coupled pump and signal power are 150 mW and 50 mW, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Q. Xu, H. Okayama, and Y. Ogawa, "Photorefractive damage of LiNbO3 quasi phase match wavelength converters," J. Appl. Phys. 87, 3203-3206 (2000).
    [CrossRef]
  2. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
    [CrossRef]
  3. Y. L. Chen, W. G. Yan, J. Guo, and G. Y. Zhang, "Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3," Appl. Phys. Lett. 87, 29041-29043 (2005).
  4. Y. Furukawa, K. Kitamura, and S. Takekana, "Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics," Opt. Lett. 23, 1892-1894 (1998).
    [CrossRef]
  5. Y. L. Chen, C. B. Lou, and J. J. Xu, "Domain switching characteristics of the near stoichiometric LiNbO3 doped MgO," J. Appl. Phys. 94, 956-958 (2003).
  6. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, "Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide," Opt. Lett. 27, 43-45 (2002).
    [CrossRef]
  7. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
    [CrossRef]
  8. B. B. Zhou, W. Zhang, M. J. Zhan, and Z. Y. Wei, "Self-starting mode-locked Cr:YAG laser with Gires-Tournois Interferometer mirror for dispersion compensation," Acta Phys. Sin. 57, 1742-1745 (2008).
  9. Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
    [CrossRef] [PubMed]
  10. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
    [CrossRef]

2008 (1)

B. B. Zhou, W. Zhang, M. J. Zhan, and Z. Y. Wei, "Self-starting mode-locked Cr:YAG laser with Gires-Tournois Interferometer mirror for dispersion compensation," Acta Phys. Sin. 57, 1742-1745 (2008).

2006 (1)

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

2005 (1)

Y. L. Chen, W. G. Yan, J. Guo, and G. Y. Zhang, "Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3," Appl. Phys. Lett. 87, 29041-29043 (2005).

2004 (1)

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. L. Chen, C. B. Lou, and J. J. Xu, "Domain switching characteristics of the near stoichiometric LiNbO3 doped MgO," J. Appl. Phys. 94, 956-958 (2003).

2002 (1)

2000 (1)

C. Q. Xu, H. Okayama, and Y. Ogawa, "Photorefractive damage of LiNbO3 quasi phase match wavelength converters," J. Appl. Phys. 87, 3203-3206 (2000).
[CrossRef]

1999 (2)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

1998 (1)

Asobe, M.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Byeon, C. C.

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chen, Y. L.

Y. L. Chen, W. G. Yan, J. Guo, and G. Y. Zhang, "Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3," Appl. Phys. Lett. 87, 29041-29043 (2005).

Y. L. Chen, C. B. Lou, and J. J. Xu, "Domain switching characteristics of the near stoichiometric LiNbO3 doped MgO," J. Appl. Phys. 94, 956-958 (2003).

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Fejer, M. M.

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, "Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide," Opt. Lett. 27, 43-45 (2002).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Furukawa, Y.

Guo, J.

Y. L. Chen, W. G. Yan, J. Guo, and G. Y. Zhang, "Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3," Appl. Phys. Lett. 87, 29041-29043 (2005).

Itoh, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

Jung, C. S.

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Kanbara, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

Kitamura, K.

Ko, D. K.

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Kurz, J. R.

Lee, J. M.

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Lee, Y. L.

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Lou, C. B.

Y. L. Chen, C. B. Lou, and J. J. Xu, "Domain switching characteristics of the near stoichiometric LiNbO3 doped MgO," J. Appl. Phys. 94, 956-958 (2003).

Magari, K.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

Miyazawa, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

Nishida, Y.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

Noguchi, K.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

Noh, Y. C.

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Ogawa, Y.

C. Q. Xu, H. Okayama, and Y. Ogawa, "Photorefractive damage of LiNbO3 quasi phase match wavelength converters," J. Appl. Phys. 87, 3203-3206 (2000).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and Y. Ogawa, "Photorefractive damage of LiNbO3 quasi phase match wavelength converters," J. Appl. Phys. 87, 3203-3206 (2000).
[CrossRef]

Parameswaran, K. R.

Park, M. Y.

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Roussev, R. V.

Suzuki, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

Tadanaga, O.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

Takekana, S.

Wei, Z. Y.

B. B. Zhou, W. Zhang, M. J. Zhan, and Z. Y. Wei, "Self-starting mode-locked Cr:YAG laser with Gires-Tournois Interferometer mirror for dispersion compensation," Acta Phys. Sin. 57, 1742-1745 (2008).

Xu, C. Q.

C. Q. Xu, H. Okayama, and Y. Ogawa, "Photorefractive damage of LiNbO3 quasi phase match wavelength converters," J. Appl. Phys. 87, 3203-3206 (2000).
[CrossRef]

Xu, J. J.

Y. L. Chen, C. B. Lou, and J. J. Xu, "Domain switching characteristics of the near stoichiometric LiNbO3 doped MgO," J. Appl. Phys. 94, 956-958 (2003).

Yan, W. G.

Y. L. Chen, W. G. Yan, J. Guo, and G. Y. Zhang, "Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3," Appl. Phys. Lett. 87, 29041-29043 (2005).

Yanagawa, T.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

Yokohama, I.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

Zhan, M. J.

B. B. Zhou, W. Zhang, M. J. Zhan, and Z. Y. Wei, "Self-starting mode-locked Cr:YAG laser with Gires-Tournois Interferometer mirror for dispersion compensation," Acta Phys. Sin. 57, 1742-1745 (2008).

Zhang, G. Y.

Y. L. Chen, W. G. Yan, J. Guo, and G. Y. Zhang, "Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3," Appl. Phys. Lett. 87, 29041-29043 (2005).

Zhang, W.

B. B. Zhou, W. Zhang, M. J. Zhan, and Z. Y. Wei, "Self-starting mode-locked Cr:YAG laser with Gires-Tournois Interferometer mirror for dispersion compensation," Acta Phys. Sin. 57, 1742-1745 (2008).

Zhou, B. B.

B. B. Zhou, W. Zhang, M. J. Zhan, and Z. Y. Wei, "Self-starting mode-locked Cr:YAG laser with Gires-Tournois Interferometer mirror for dispersion compensation," Acta Phys. Sin. 57, 1742-1745 (2008).

Acta Phys. Sin. (1)

B. B. Zhou, W. Zhang, M. J. Zhan, and Z. Y. Wei, "Self-starting mode-locked Cr:YAG laser with Gires-Tournois Interferometer mirror for dispersion compensation," Acta Phys. Sin. 57, 1742-1745 (2008).

Appl. Phys. Lett. (2)

Y. L. Chen, W. G. Yan, J. Guo, and G. Y. Zhang, "Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3," Appl. Phys. Lett. 87, 29041-29043 (2005).

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-µm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101-061103 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, "All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide," IEEE Photon. Technol. Lett. 11, 328-330 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

J. Appl. Phys. (2)

C. Q. Xu, H. Okayama, and Y. Ogawa, "Photorefractive damage of LiNbO3 quasi phase match wavelength converters," J. Appl. Phys. 87, 3203-3206 (2000).
[CrossRef]

Y. L. Chen, C. B. Lou, and J. J. Xu, "Domain switching characteristics of the near stoichiometric LiNbO3 doped MgO," J. Appl. Phys. 94, 956-958 (2003).

Opt. Express. (1)

Y. L. Lee, C. S. Jung, Y. C. Noh, M. Y. Park, C. C. Byeon, D. K. Ko, and J. M. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express. 12, 2649-2655 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Ti:PPSMgLN waveguide device with period is 17.3 μm

Fig. 2.
Fig. 2.

Intensity profile of the second harmonic mode

Fig. 3.
Fig. 3.

SHG efficiency dependent on input fundamental power

Fig. 4.
Fig. 4.

SHG wavelength shift against 780 nm wave irradiation time

Fig. 5.
Fig. 5.

Schematic diagram of the experimental setup for QPM DFG. M, mirror; L, lens; DM, dichroic mirror; GTI, Gires-Tournois interferometer; MO, micro objective; A, aperture.

Fig. 6.
Fig. 6.

Difference frequency generation spectrum with 770 nm pump light of 150 mW

Fig. 7.
Fig. 7.

Optical spectra of wavelength conversion based on QPM DFG process

Metrics