Abstract

Using numerical simulations, we study and compare the performance of 42.8-Gb/s and 112-Gb/s intradyne coherent polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) systems in wavelength-division-multiplexed (WDM) transmission with inline dispersion compensation fiber (DCF) and that with fully electronic dispersion compensation. Two effects are considered in the studies. One is fiber nonlinearities and the other is the local oscillator (LO) phase noise to amplitude noise conversion induced by electronic dispersion compensation. Results of 1000-km transmission employing standard single-mode fiber (SSMF) show that, for non-return-to-zero (NRZ) PDM-QPSK, both the 42.8-Gb/s and 112-Gb/s WDM systems with DCF have less tolerance to fiber nonlinearities than those with electronic dispersion compensation due to nonlinear polarization scattering. However, by using time-interleaved return-to-zero (RZ) PDM-QPSK, which can significantly suppress nonlinear polarization scattering in a system with inline DCF, the 42.8-Gb/s system with DCF can achieve better performance than that with electronic dispersion compensation, and comparable performance can be obtained for the 112-Gb/s system with DCF and that with electronic dispersion compensation. We find that the LO phase noise to amplitude noise conversion can cause significant penalties in the 112-Gb/s system with only electronic dispersion compensation if distributed feedback lasers are used.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightwave Technol. 24, 12-21 (2006).
    [CrossRef]
  2. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, "Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express 15, 2120-2126 (2007).
    [CrossRef] [PubMed]
  3. C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O’Sullivan, "Wavelength division multiplexing (WDM) and polarization mode dispersion (PMD) performance of a coherent 40Gbit/s dual-polarization quadrature phase shift keying (DP-QPSK) transceiver," in Proceeding of Optical Fiber Communications Conference, Anaheim, CA, 2007, paper PDP16.
  4. J. Renaudier, G. Charlet, O. Bertran Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, "Experimental analysis of 100Gb/s coherent PDM-QPSK long-haul transmission under constraints of typical terrestrial networks," in Proceeding of European Conference on Optical Communications, Brussels, Belgium, 2008, paper Th.2.A.3.
  5. R. -J. Essiambre, G. Raybon, and B. Mikkelsen, "Pseudo-linear transmission of high speed signals: 40 and 160 Gbit/s," in Optical Fiber Telecommunications IVB, I. B. Kaminow and T. Li Ed. (Academic, New York, 2002).
  6. S. Bigo, "Modelling of WDM terrestrial and submarine links for the design of WDM networks," in Proceeding of Optical Fiber Communications Conference, Anaheim, CA, 2006, paper OThD1.
  7. R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
    [CrossRef]
  8. G. Charlet, J. Renaudier, O. Bertran Pardo, P. Tran, H. Mardoyan, and S. Bigo, "Performance comparison of singly-polarized and polarization-multiplexed at 10Gbaud under nonlinear impairments," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2008, paper OThU8.
  9. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, "Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems," IEEE Photon. Technol. Lett. 20, 1473-1475 (2008).
    [CrossRef]
  10. C. Xie, "Inter-channel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems," IEEE Photon. Technol. Lett. 21, 274-276, 2009.
    [CrossRef]
  11. C. Xie, "Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2009, paper OMT4 (to be published).
  12. W. Shieh and K.-P. Ho, "Equalization-enhanced phase noise for coherent-detection systems using electronics digital signal processing," Opt. Express 16, 15718-15727 (2008).
    [CrossRef] [PubMed]
  13. X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, "Reduction of collision-induced timing jitter in dense wavelength-division multiplexing by the use of periodic-group-delay dispersion compensators," Opt. Lett. 28, 983-985 (2003).
    [CrossRef] [PubMed]
  14. L. F. Mollenauer, J. P. Gordon, and F. Heismann, "Polarization scattering by soliton-soliton collisions," Opt. Lett. 20, 2060-2062 (1995).
    [CrossRef] [PubMed]
  15. C. Xie, Z. Wang, S. Chandrasekhar, and X. Liu, "Nonlinear polarization scattering impairments and mitigation in 10-Gbaud polarization-division-multiplexed WDM systems," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2009, paper OTuD6 (to be published).
  16. C. Xie, L. Möller, D. C. Kilper, and L. F. Mollenauer, "Impact of cross-phase modulation induced polarization scattering on optical PMD compensation in WDM systems" Opt. Lett. 28, 2303-2305 (2003).
    [CrossRef] [PubMed]
  17. S. Chandrasekhar and X. Liu, "Experimental investigation of system impairments in polarization multiplexed 107-Gb/s RZ-DQPSK," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2008, paper OThU7.
  18. D. N. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867-1875 (1980).
    [CrossRef]
  19. L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
    [CrossRef]
  20. R. Noé, "Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery," J. Lightwave Technol. 23, 802-808 (2005).
    [CrossRef]

2009 (1)

C. Xie, "Inter-channel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems," IEEE Photon. Technol. Lett. 21, 274-276, 2009.
[CrossRef]

2008 (2)

W. Shieh and K.-P. Ho, "Equalization-enhanced phase noise for coherent-detection systems using electronics digital signal processing," Opt. Express 16, 15718-15727 (2008).
[CrossRef] [PubMed]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, "Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems," IEEE Photon. Technol. Lett. 20, 1473-1475 (2008).
[CrossRef]

2007 (1)

2006 (2)

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightwave Technol. 24, 12-21 (2006).
[CrossRef]

2005 (1)

2004 (1)

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

2003 (2)

1995 (1)

1980 (1)

D. N. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867-1875 (1980).
[CrossRef]

Bayvel, P.

Burrows, E. C.

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

Carena, A.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, "Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems," IEEE Photon. Technol. Lett. 20, 1473-1475 (2008).
[CrossRef]

Chraplyvy, A. R.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Curri, V.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, "Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems," IEEE Photon. Technol. Lett. 20, 1473-1475 (2008).
[CrossRef]

Essiambre, R.-J.

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Forghieri, F.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, "Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems," IEEE Photon. Technol. Lett. 20, 1473-1475 (2008).
[CrossRef]

Gavioli, G.

Gnauck, A. H.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Godard, D. N.

D. N. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867-1875 (1980).
[CrossRef]

Gordon, J. P.

Heismann, F.

Ho, K.-P.

Katoh, K.

Kikuchi, K.

Killey, R. I.

Kilper, D. C.

Lee, W.

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

Liu, X.

Ly-Gagnon, D.-S.

Mollenauer, L. F.

Möller, L.

Noé, R.

Poggiolini, P.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, "Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems," IEEE Photon. Technol. Lett. 20, 1473-1475 (2008).
[CrossRef]

Savory, S. J.

Shieh, W.

Tsukamoto, S.

Wang, X. Q.

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

Wei, X.

White, C. A.

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

Wickham, L. K.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Winzer, P. J.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Winzer, P.J.

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

Xie, C.

IEEE Photon. Technol. Lett. (4)

R.-J. Essiambre, P.J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, "Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems," IEEE Photon. Technol. Lett. 20, 1473-1475 (2008).
[CrossRef]

C. Xie, "Inter-channel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems," IEEE Photon. Technol. Lett. 21, 274-276, 2009.
[CrossRef]

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photon. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

IEEE Trans. Commun. (1)

D. N. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867-1875 (1980).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Lett. (3)

Other (8)

S. Chandrasekhar and X. Liu, "Experimental investigation of system impairments in polarization multiplexed 107-Gb/s RZ-DQPSK," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2008, paper OThU7.

C. Xie, Z. Wang, S. Chandrasekhar, and X. Liu, "Nonlinear polarization scattering impairments and mitigation in 10-Gbaud polarization-division-multiplexed WDM systems," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2009, paper OTuD6 (to be published).

C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O’Sullivan, "Wavelength division multiplexing (WDM) and polarization mode dispersion (PMD) performance of a coherent 40Gbit/s dual-polarization quadrature phase shift keying (DP-QPSK) transceiver," in Proceeding of Optical Fiber Communications Conference, Anaheim, CA, 2007, paper PDP16.

J. Renaudier, G. Charlet, O. Bertran Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, "Experimental analysis of 100Gb/s coherent PDM-QPSK long-haul transmission under constraints of typical terrestrial networks," in Proceeding of European Conference on Optical Communications, Brussels, Belgium, 2008, paper Th.2.A.3.

R. -J. Essiambre, G. Raybon, and B. Mikkelsen, "Pseudo-linear transmission of high speed signals: 40 and 160 Gbit/s," in Optical Fiber Telecommunications IVB, I. B. Kaminow and T. Li Ed. (Academic, New York, 2002).

S. Bigo, "Modelling of WDM terrestrial and submarine links for the design of WDM networks," in Proceeding of Optical Fiber Communications Conference, Anaheim, CA, 2006, paper OThD1.

C. Xie, "Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2009, paper OMT4 (to be published).

G. Charlet, J. Renaudier, O. Bertran Pardo, P. Tran, H. Mardoyan, and S. Bigo, "Performance comparison of singly-polarized and polarization-multiplexed at 10Gbaud under nonlinear impairments," in Proceeding of Optical Fiber Communications Conference, San Diego, CA, 2008, paper OThU8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Waveform of NRZ-PDM-QPSK (dashed lines) and synchronized RZ-PDM-DQPSK (solid lines), (b) SOP of the PDM-QPSK signal in (a) on the Poincaré sphere, (c) Waveform of time-interleaved RZ-PDM-QPSK, (d) SOP of the time-interleaved RZ-PDM-DQPSK signal on the Poincaré sphere. Ts: symbol period.

Fig. 2.
Fig. 2.

System model. (a) transmission line, (b) block diagram of the PDM-QPSK transmitter, (c) block diagram of the coherent receiver. The DCF shown are removed for systems without DCF. Tx: transmitter, Rx: receiver, BD: balanced detector, CD: chromatic dispersion.

Fig. 3.
Fig. 3.

Required OSNR at BER of 10-3 after 1000-km transmission versus launch power per channel for the 42.8-Gb/s synchronized NRZ-PDM-QPSK coherent system (a), and time-interleaved RZ-PDM-QPSK coherent system (b). The solid, dash and dotted lines are for LO linewidths of 0, 2 MHz and 4 MHz respectively.

Fig. 4.
Fig. 4.

DOP of the 21.4-Gb/s SP-QPSK reference channel after 1000 km transmission versus launch power per channel for the synchronized NRZ-PDM-QPSK and time-interleaved RZ-PDM-QPSK system. Solid lines: surrounding channels are 42.8-Gb/s synchronized NRZ-PDM-QPSK, dashed lines: surrounding channels are 42.8-Gb/s time-interleaved RZ-PDM-QPSK.

Fig. 5.
Fig. 5.

Signal constellation diagrams of X polarization of a 42.8-Gb/s synchronized NRZ-PDM-QPSK channel after 1000-km WDM transmission at OSNR = 16 dB. (a) and (b): surrounding channels are 21.4-Gb/s NRZ-SP-QPSK, (c) and (d): surrounding channels are 42.8-Gb/s NRZ-PDM-QPSK. (a) and (c) for the system with DCF and (b) and (d) without DCF. The launch power per channel is 4 dBm. LO linewidth is zero.

Fig. 6.
Fig. 6.

Required OSNR after 1000-km transmission versus launch power per channel for the 112-Gb/s synchronized NRZ-PDM-QPSK coherent system (a), and time-interleaved RZ-PDM-QPSK coherent system (b). The solid, dash and dotted lines are for LO linewidths of 0, 2 MHz and 4 MHz respectively.

Fig. 7.
Fig. 7.

DOP of the 56-Gb/s SP-QPSK reference channel after 1000 km transmission versus launch power per channel for the synchronized NRZ-PDM-QPSK and time-interleaved RZ-PDM-QPSK system. Solid lines: surrounding channels are 112-Gb/s synchronized NRZ-PDM-QPSK, dashed lines: surrounding channels are 112-Gb/s time-interleaved RZ-PDM-QPSK.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S a ( z , t ) z = 8 9 γ P b ( z , t ) [ S a ( z , t ) × S b ( z , t ) ]

Metrics