Abstract

We report an experimental study of the collective coupling of three-level atoms with a cavity mode and a free-space laser field. The measurement of the cavity transmission with a weak probe field coupled into the cavity mode reveals three spectral peaks: two sidebands and a central peak, which is produced by the coherent interaction of the free-space field with individual atoms and the collective interaction of the multiple atoms with the cavity mode. The experimental results agree with a simple calculation based on the classical light transmission through a cavity containing multiple atoms coherently driven by a free-space laser.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppressing normal mode excitation by quantum interference in a cavity-atom system

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu
Opt. Express 16(11) 7860-7868 (2008)

Polariton states of cavity coupled three-level atoms

Guoqing Yang, Bichen Zou, Zheng Tan, and Yifu Zhu
J. Opt. Soc. Am. B 32(6) 1208-1213 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Berman, Ed, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).
  2. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109(1963).
    [Crossref]
  3. J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, “Theory of Spontaneous-Emission Line Shape in an Ideal Cavity,” Phys. Rev. Lett. 51, 550–553(1983).
    [Crossref]
  4. A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
    [Crossref] [PubMed]
  5. G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53, 1732–1735(1984).
    [Crossref]
  6. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
    [Crossref] [PubMed]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
    [Crossref] [PubMed]
  8. J. Gripp, S. L. Mielke, and L. A. Orozco, “Evolution of the vacuum Rabi peaks in a detuned atom-cavity system,” Phys. Rev. A 56, 3262–3273 (1997).
    [Crossref]
  9. J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity,” Phys. Rev. Lett. 96, 023002(1-4) (2006)
    [Crossref] [PubMed]
  10. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
    [Crossref] [PubMed]
  11. P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
    [Crossref] [PubMed]
  12. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).
    [Crossref]
  13. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732–1735 (2000).
    [Crossref]
  14. G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system,” Phys. Rev. A 76, 053814 (1-4) (2007).
    [Crossref]
  15. H. Wu, J. Gea-Banacloche, and M. Xiao, “Observa ion of Intracavity Electromagnetically InducedTransparency and Polariton Resonances in a Doppler-Broadened Medium,” Phys. Rev. Lett. 100, 173602(1-4) (2008).
    [Crossref] [PubMed]
  16. A. Joshi and M. Xiao, “Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity,” Phys. Rev. Lett. 91, 143904-(1-4) (2003).
    [Crossref] [PubMed]
  17. J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98, 183601(1-4) (2007).
    [Crossref] [PubMed]
  18. J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48(2008).
    [Crossref]
  19. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50, 36–42 (1997).
    [Crossref]
  20. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam)  31, 257–354 (1996).
  21. J. Zhang, G. Hernandez, and Y. Zhu, “Suppressing normal mode excitation by quantum interference in a cavity-atom system,” Optics Express 16, 7860–7868 (2008).
    [Crossref] [PubMed]

2008 (3)

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observa ion of Intracavity Electromagnetically InducedTransparency and Polariton Resonances in a Doppler-Broadened Medium,” Phys. Rev. Lett. 100, 173602(1-4) (2008).
[Crossref] [PubMed]

J. Zhang, G. Hernandez, and Y. Zhu, “Suppressing normal mode excitation by quantum interference in a cavity-atom system,” Optics Express 16, 7860–7868 (2008).
[Crossref] [PubMed]

J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48(2008).
[Crossref]

2007 (2)

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system,” Phys. Rev. A 76, 053814 (1-4) (2007).
[Crossref]

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98, 183601(1-4) (2007).
[Crossref] [PubMed]

2006 (1)

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity,” Phys. Rev. Lett. 96, 023002(1-4) (2006)
[Crossref] [PubMed]

2004 (1)

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

2003 (1)

A. Joshi and M. Xiao, “Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity,” Phys. Rev. Lett. 91, 143904-(1-4) (2003).
[Crossref] [PubMed]

2000 (1)

1998 (1)

1997 (2)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

J. Gripp, S. L. Mielke, and L. A. Orozco, “Evolution of the vacuum Rabi peaks in a detuned atom-cavity system,” Phys. Rev. A 56, 3262–3273 (1997).
[Crossref]

1996 (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam)  31, 257–354 (1996).

1992 (1)

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

1991 (1)

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
[Crossref] [PubMed]

1990 (1)

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

1989 (1)

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
[Crossref] [PubMed]

1984 (1)

G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53, 1732–1735(1984).
[Crossref]

1983 (1)

J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, “Theory of Spontaneous-Emission Line Shape in an Ideal Cavity,” Phys. Rev. Lett. 51, 550–553(1983).
[Crossref]

1963 (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109(1963).
[Crossref]

Agarwal, G. S.

G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53, 1732–1735(1984).
[Crossref]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam)  31, 257–354 (1996).

Berman, P. R.

P. R. Berman, Ed, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

Birnbaum, K. M.

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

Boca, A.

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

Boozer, A. D.

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

Brecha, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
[Crossref] [PubMed]

Burkett, W. H.

Carmichael, H. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
[Crossref] [PubMed]

Cummings, F. W.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109(1963).
[Crossref]

Eberly, J. H.

J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, “Theory of Spontaneous-Emission Line Shape in an Ideal Cavity,” Phys. Rev. Lett. 51, 550–553(1983).
[Crossref]

Fleischhauer, M.

Galatola, P.

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

Gauthier, D. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

Gea-Banacloche, J.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observa ion of Intracavity Electromagnetically InducedTransparency and Polariton Resonances in a Doppler-Broadened Medium,” Phys. Rev. Lett. 100, 173602(1-4) (2008).
[Crossref] [PubMed]

Goorskey, D. J.

Grangier, P.

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

Gripp, J.

J. Gripp, S. L. Mielke, and L. A. Orozco, “Evolution of the vacuum Rabi peaks in a detuned atom-cavity system,” Phys. Rev. A 56, 3262–3273 (1997).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Hemmerich, A.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity,” Phys. Rev. Lett. 96, 023002(1-4) (2006)
[Crossref] [PubMed]

Hernandez, G.

J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48(2008).
[Crossref]

J. Zhang, G. Hernandez, and Y. Zhu, “Suppressing normal mode excitation by quantum interference in a cavity-atom system,” Optics Express 16, 7860–7868 (2008).
[Crossref] [PubMed]

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system,” Phys. Rev. A 76, 053814 (1-4) (2007).
[Crossref]

iller, R.

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

Jaynes, E. T.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109(1963).
[Crossref]

Joshi, A.

A. Joshi and M. Xiao, “Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity,” Phys. Rev. Lett. 91, 143904-(1-4) (2003).
[Crossref] [PubMed]

Kimble, H. J.

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
[Crossref] [PubMed]

Klinner, J.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity,” Phys. Rev. Lett. 96, 023002(1-4) (2006)
[Crossref] [PubMed]

Lee, W. D.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
[Crossref] [PubMed]

Lindholdt, M.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity,” Phys. Rev. Lett. 96, 023002(1-4) (2006)
[Crossref] [PubMed]

Lugiato, L. A.

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

Lukin, M. D.

McKeever, J.

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

Mielke, S. L.

J. Gripp, S. L. Mielke, and L. A. Orozco, “Evolution of the vacuum Rabi peaks in a detuned atom-cavity system,” Phys. Rev. A 56, 3262–3273 (1997).
[Crossref]

Morin, S. E.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

Mossberg, T. W.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

Nagorny, B.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity,” Phys. Rev. Lett. 96, 023002(1-4) (2006)
[Crossref] [PubMed]

Narozhny, N. B.

J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, “Theory of Spontaneous-Emission Line Shape in an Ideal Cavity,” Phys. Rev. Lett. 51, 550–553(1983).
[Crossref]

Orozco, L. A.

J. Gripp, S. L. Mielke, and L. A. Orozco, “Evolution of the vacuum Rabi peaks in a detuned atom-cavity system,” Phys. Rev. A 56, 3262–3273 (1997).
[Crossref]

Pessina, E. M.

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

Raizen, M. G.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
[Crossref] [PubMed]

Rempe, G.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
[Crossref] [PubMed]

Roch, J. F.

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

Roger, J.

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

Sanchez-Mondragon, J. J.

J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, “Theory of Spontaneous-Emission Line Shape in an Ideal Cavity,” Phys. Rev. Lett. 51, 550–553(1983).
[Crossref]

Scandroglio, G.

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

Scully, M. O.

Simon, J.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98, 183601(1-4) (2007).
[Crossref] [PubMed]

Tanji, H.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98, 183601(1-4) (2007).
[Crossref] [PubMed]

Thompson, J. K.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98, 183601(1-4) (2007).
[Crossref] [PubMed]

Thompson, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
[Crossref] [PubMed]

Velichansky, V. L.

Vuletic, V.

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98, 183601(1-4) (2007).
[Crossref] [PubMed]

Wang, H.

Wu, H.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observa ion of Intracavity Electromagnetically InducedTransparency and Polariton Resonances in a Doppler-Broadened Medium,” Phys. Rev. Lett. 100, 173602(1-4) (2008).
[Crossref] [PubMed]

Wu, Q.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

Xiao, M.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observa ion of Intracavity Electromagnetically InducedTransparency and Polariton Resonances in a Doppler-Broadened Medium,” Phys. Rev. Lett. 100, 173602(1-4) (2008).
[Crossref] [PubMed]

A. Joshi and M. Xiao, “Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity,” Phys. Rev. Lett. 91, 143904-(1-4) (2003).
[Crossref] [PubMed]

H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732–1735 (2000).
[Crossref]

Zhang, J.

J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48(2008).
[Crossref]

J. Zhang, G. Hernandez, and Y. Zhu, “Suppressing normal mode excitation by quantum interference in a cavity-atom system,” Optics Express 16, 7860–7868 (2008).
[Crossref] [PubMed]

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system,” Phys. Rev. A 76, 053814 (1-4) (2007).
[Crossref]

Zhu, Y.

J. Zhang, G. Hernandez, and Y. Zhu, “Suppressing normal mode excitation by quantum interference in a cavity-atom system,” Optics Express 16, 7860–7868 (2008).
[Crossref] [PubMed]

J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48(2008).
[Crossref]

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system,” Phys. Rev. A 76, 053814 (1-4) (2007).
[Crossref]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

Opt. Lett. (3)

Optics Express (1)

J. Zhang, G. Hernandez, and Y. Zhu, “Suppressing normal mode excitation by quantum interference in a cavity-atom system,” Optics Express 16, 7860–7868 (2008).
[Crossref] [PubMed]

Phys. Rev. A (3)

P. Grangier, J. F. Roch, J. Roger, L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, “2-photon double-beam optical bistability in the dispersive regime,” Phys. Rev. A 46, 2735–2743 (1992).
[Crossref] [PubMed]

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system,” Phys. Rev. A 76, 053814 (1-4) (2007).
[Crossref]

J. Gripp, S. L. Mielke, and L. A. Orozco, “Evolution of the vacuum Rabi peaks in a detuned atom-cavity system,” Phys. Rev. A 56, 3262–3273 (1997).
[Crossref]

Phys. Rev. Lett. (10)

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity,” Phys. Rev. Lett. 96, 023002(1-4) (2006)
[Crossref] [PubMed]

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727–1730 (1991).
[Crossref] [PubMed]

J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, “Theory of Spontaneous-Emission Line Shape in an Ideal Cavity,” Phys. Rev. Lett. 51, 550–553(1983).
[Crossref]

A. Boca, R. iller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the Vacuum Rabi Spectrum for One Trapped Atom,” Phys. Rev. Lett. 93, 233603(1-4) (2004).
[Crossref] [PubMed]

G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53, 1732–1735(1984).
[Crossref]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, ”Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63, 240–243 (1989).
[Crossref] [PubMed]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2452 (1990).
[Crossref] [PubMed]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observa ion of Intracavity Electromagnetically InducedTransparency and Polariton Resonances in a Doppler-Broadened Medium,” Phys. Rev. Lett. 100, 173602(1-4) (2008).
[Crossref] [PubMed]

A. Joshi and M. Xiao, “Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity,” Phys. Rev. Lett. 91, 143904-(1-4) (2003).
[Crossref] [PubMed]

J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing collective atomic excitations and single photons,” Phys. Rev. Lett. 98, 183601(1-4) (2007).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Proc. IEEE (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109(1963).
[Crossref]

Other (2)

P. R. Berman, Ed, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam)  31, 257–354 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Three-level atomic system coupled to a cavity mode (with a collective coupling coefficient gN) and a free-space control laser (with a Rabi frequency Ω).

Fig. 2.
Fig. 2.

(a) Calculated phase shifts φ 1 (red curves), φ 2 (black curves), and φ 1 + φ 2 (blue curves) versus the probe frequency detuning. (b) Calculated cavity transmission of the probe laser field versus the probe frequency detuning. The optical density of the atomic medium nσeaℓ=5. Other parameters are: Ω=Γ, γab=0.002 Γ, δ = 0, Δ c = 0, L=5 cm, and R=0.98.

Fig. 3.
Fig. 3.

(a) 85Rb atoms interacting with a control field and a cavity field, which forms a threelevel Λ-type system. The spontaneous decay rate of the excited state |e> is Γ =2πx5.4x106 s-1. (b) Schematic drawing of the cavity apparatus. The control laser is circularly polarized and the probe laser is linearly polarized along the x direction.

Fig. 4.
Fig. 4.

Cavity transmission versus the probe detuning Δp. Blue dotted lines are experimental data and red lines are calculations. From Fig. 4(a) to Fig. 4(e), the optical densities are 0.5, 0.8, 1.4, 2.8, and 4.0 respectively.

Fig. 5.
Fig. 5.

(a) The linewidth of the central peak versus the optical density nσ13ℓ. (b) The modified vacuum Rabi frequency Ω' versus the optical density. The dots are the experimental data and the red lines are the calculations. The black line in (b) is the calculated vacuum Rabi splitting G for a two-level system. The parameters are Δc=0, Δ=0, Ω=19 MHz, R=0.96 and γab=0.025Γ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ ( v p ) = 4 K ( Δ Δ p + i γ a b ) 4 ( Δ p + i Γ ) ( Δ Δ p + i γ a b ) Ω 2 .
E t ( υ p ) = E t exp ( i φ t ) = E i n ( v p ) ( 1 R ) exp ( i k ( L + χ ' + ' ' ) ) ( 1 R · exp ( 2 i k ( L + χ ' + i χ ' ' ) ) ) ,
Δ p = ± Ω ' = ± g 2 N + Ω 2 .

Metrics