Abstract

An optical device scheme that serves simultaneously as a power combiner for upstream and wavelength demultiplexer for downstream signals is presented. The design concept is validated experimentally by an optical module based on off-the-shelf discrete optical components. An integrated device based on planar lightwave circuit (PLC) is proposed and analyzed in which a multi-mode interference (MMI) device is utilized to separate the upstream 1310 nm signal from the downstream 155x nm signals. The dense WDM function is realized through an arrayed-waveguide-grating (AWG). Design guidelines and optimization procedure for the device are discussed by way of examples.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Shumate, “Fiber-to-the-home: 1977–2007,” J. Lightwave Technol. 26, 1093–1103 (2008).
    [Crossref]
  2. R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
    [Crossref]
  3. S. G. Mun, S. M. Lee, K. Okamoto, and C. H. Lee, “A multiple star WDM-PON using a band splitting WDM filter,” Opt. Express 16, 6260–6266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-9-6260.
    [Crossref] [PubMed]
  4. C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24, 4568–4583 (2006).
    [Crossref]
  5. I. Sankawa, F. Yamamoto, Y. Okumura, and Y. Ogura, “Cost and quantity analysis of passive double-star optical-access-network facilities for broadband service multiplexing,” J. Lightwave Technol. 24, 3625–3634 (2006).
    [Crossref]
  6. I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
    [Crossref] [PubMed]
  7. A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
    [Crossref]
  8. Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as opticalsplitter/router,” Electron. Lett. 31, 726–727, (1995).
    [Crossref]
  9. Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123–126.
  10. B. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference, pp. 444–445 (2003).
  11. C. L. Xu, X. B. Hong, and W. P. Huang, “Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit,” Opt. Express 14, 4675–4686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-11-4675.
    [Crossref] [PubMed]
  12. APSS, “Apollo photonics solution suite,” Apollo Inc., Hamilton, Ontario Canada.
  13. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-Imaging -principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  14. J. Lin, “Theoretical investigation of polarization-insensitive multimode interference splitters on silicon-on-insulator,” IEEE Photon Technol. Lett. 20, 1234–1236 (2008).
    [Crossref]
  15. M. K. Smit and C. vanDam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  16. D. X. Dai and S. L. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires,” Opt. Lett. 31, 1988–1990 (2006).
    [Crossref] [PubMed]
  17. L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
    [Crossref]

2008 (4)

P. W. Shumate, “Fiber-to-the-home: 1977–2007,” J. Lightwave Technol. 26, 1093–1103 (2008).
[Crossref]

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

S. G. Mun, S. M. Lee, K. Okamoto, and C. H. Lee, “A multiple star WDM-PON using a band splitting WDM filter,” Opt. Express 16, 6260–6266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-9-6260.
[Crossref] [PubMed]

J. Lin, “Theoretical investigation of polarization-insensitive multimode interference splitters on silicon-on-insulator,” IEEE Photon Technol. Lett. 20, 1234–1236 (2008).
[Crossref]

2006 (4)

2005 (1)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

2004 (1)

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[Crossref] [PubMed]

1996 (2)

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

M. K. Smit and C. vanDam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

1995 (2)

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as opticalsplitter/router,” Electron. Lett. 31, 726–727, (1995).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-Imaging -principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Amersfoort, M. R.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

Banerjee, A.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Cappuzzo, M.

Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123–126.

Clarke, F.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Cohen, L.

Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123–126.

Dai, D. X.

Demeester, P.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

deVreede, A. H.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

He, S. L.

Henry, C.

Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123–126.

Heron, R. W.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Himeno, A.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as opticalsplitter/router,” Electron. Lett. 31, 726–727, (1995).
[Crossref]

Holburn, D. M.

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[Crossref] [PubMed]

Hong, X. B.

Huang, W. P.

Inoue, Y.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as opticalsplitter/router,” Electron. Lett. 31, 726–727, (1995).
[Crossref]

Kawachi, M.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as opticalsplitter/router,” Electron. Lett. 31, 726–727, (1995).
[Crossref]

Kim, B. Y.

Kim, K.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Kramer, G.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Kuntze, A.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

Laskowski, E.

Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123–126.

Lee, C. H.

Lee, S. M.

Li, Y.

Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123–126.

Lin, J.

J. Lin, “Theoretical investigation of polarization-insensitive multimode interference splitters on silicon-on-insulator,” IEEE Photon Technol. Lett. 20, 1234–1236 (2008).
[Crossref]

Little, B.

B. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference, pp. 444–445 (2003).

Moriwaki, K.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as opticalsplitter/router,” Electron. Lett. 31, 726–727, (1995).
[Crossref]

Mukherjee, B.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Mun, S. G.

Ogura, Y.

Okamoto, K.

Okumura, Y.

Park, Y.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Parker, M. C.

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[Crossref] [PubMed]

Patel, S. S.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Pedersen, J. W.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-Imaging -principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Pfeiffer, T.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Rochat, E.

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[Crossref] [PubMed]

Sankawa, I.

Shumate, P. W.

Smit, M. K.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

M. K. Smit and C. vanDam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Smith, J.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-Imaging -principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Song, H.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Sorin, W. V.

Spiekman, L. H.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

Tsalamanis, I.

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[Crossref] [PubMed]

van Veen, D. T.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

vanDam, C.

M. K. Smit and C. vanDam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

vanHam, F. P. G. M.

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

Walker, S. D.

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[Crossref] [PubMed]

Xu, C. L.

Yamamoto, F.

Yang, S. H.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Bell Labs Tech. J. (1)

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Electron. Lett. (1)

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as opticalsplitter/router,” Electron. Lett. 31, 726–727, (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Smit and C. vanDam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

IEEE Photon Technol. Lett. (1)

J. Lin, “Theoretical investigation of polarization-insensitive multimode interference splitters on silicon-on-insulator,” IEEE Photon Technol. Lett. 20, 1234–1236 (2008).
[Crossref]

J. Lightwave Technol. (5)

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-Imaging -principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, “Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM,” J. Lightwave Technol. 14, 991–995 (1996).
[Crossref]

P. W. Shumate, “Fiber-to-the-home: 1977–2007,” J. Lightwave Technol. 26, 1093–1103 (2008).
[Crossref]

C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24, 4568–4583 (2006).
[Crossref]

I. Sankawa, F. Yamamoto, Y. Okumura, and Y. Ogura, “Cost and quantity analysis of passive double-star optical-access-network facilities for broadband service multiplexing,” J. Lightwave Technol. 24, 3625–3634 (2006).
[Crossref]

J. Opt. Networking (1)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Opt. Express (2)

Opt. Express. (1)

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express. 12, 764–769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[Crossref] [PubMed]

Opt. Lett. (1)

Other (3)

APSS, “Apollo photonics solution suite,” Apollo Inc., Hamilton, Ontario Canada.

Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123–126.

B. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference, pp. 444–445 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

WDM-PON scheme (a) a typical WDM- PON, (b) a hybrid WDM-PON.

Fig. 2.
Fig. 2.

Schematic configuration for the wavelength demultiplexer-power combiner.

Fig. 3.
Fig. 3.

Experiment set-up for the wavelength demultiplexer-power combiner.

Fig. 4.
Fig. 4.

Experimental results of the wavelength demultiplexer-power combiner.

Fig. 5.
Fig. 5.

Circuit layout of the designed wavelength demuliplexer and power combiner.

Fig. 6.
Fig. 6.

Spectral response of an optimized 1×2 MMI.

Fig. 7.
Fig. 7.

Spectral response of 1×4 MMI.

Fig. 8.
Fig. 8.

Spectral response of the waveguide cross.

Fig. 9.
Fig. 9.

Spectral response of the 1×4 AWG. (a) X polarization, (b) Y polarization.

Fig. 10.
Fig. 10.

Spectral response of the PLC wavelength demultiplexer-power combiner.

Metrics