Abstract

An optical device scheme that serves simultaneously as a power combiner for upstream and wavelength demultiplexer for downstream signals is presented. The design concept is validated experimentally by an optical module based on off-the-shelf discrete optical components. An integrated device based on planar lightwave circuit (PLC) is proposed and analyzed in which a multi-mode interference (MMI) device is utilized to separate the upstream 1310 nm signal from the downstream 155x nm signals. The dense WDM function is realized through an arrayed-waveguide-grating (AWG). Design guidelines and optimization procedure for the device are discussed by way of examples.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. W. Shumate, "Fiber-to-the-home: 1977-2007," J. Lightwave Technol. 26, 1093-1103 (2008).
    [CrossRef]
  2. R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, "Technology innovations and architecture solutions for the next-generation optical access network," Bell Labs Tech. J. 13, 163-181 (2008).
    [CrossRef]
  3. S. G. Mun, S. M. Lee, K. Okamoto, and C. H. Lee, "A multiple star WDM-PON using a band splitting WDM filter," Opt. Express 16, 6260-6266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-9-6260.
    [CrossRef] [PubMed]
  4. C. H. Lee, W. V. Sorin, and B. Y. Kim, "Fiber to the home using a PON infrastructure," J. Lightwave Technol. 24, 4568-4583 (2006).
    [CrossRef]
  5. I. Sankawa, F. Yamamoto, Y. Okumura, and Y. Ogura, "Cost and quantity analysis of passive double-star optical-access-network facilities for broadband service multiplexing," J. Lightwave Technol. 24, 3625-3634 (2006).
    [CrossRef]
  6. I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, "Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing," Opt. Express. 12, 764-769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
    [CrossRef] [PubMed]
  7. A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, "Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review," J. Opt. Networking 4, 737-758 (2005).
    [CrossRef]
  8. Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, "Silica-based arrayed-waveguide grating circuit as opticalsplitter/router," Electron. Lett. 31, 726-727, (1995).
    [CrossRef]
  9. Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, "Demonstration and application of a monolithic two-PONs-in-one device," in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123-126.
  10. B. Little, "A VLSI photonics platform," in Optical Fiber Communication Conference, pp. 444-445 (2003).
  11. C. L. Xu, X. B. Hong, and W. P. Huang, "Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit," Opt. Express 14, 4675-4686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-11-4675.
    [CrossRef] [PubMed]
  12. APSS, "Apollo photonics solution suite," Apollo Inc., Hamilton, Ontario Canada.
  13. L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-Imaging - principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  14. J. Lin, "Theoretical investigation of polarization-insensitive multimode interference splitters on silicon-on-insulator," IEEE Photon Technol. Lett. 20, 1234-1236 (2008).
    [CrossRef]
  15. K. Smit, and C. vanDam, "PHASAR-based WDM-devices: Principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
    [CrossRef]
  16. X. Dai, and S. L. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31, 1988-1990 (2006).
    [CrossRef] [PubMed]
  17. L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, "Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM," J. Lightwave Technol. 14, 991-995 (1996).
    [CrossRef]

Other (17)

P. W. Shumate, "Fiber-to-the-home: 1977-2007," J. Lightwave Technol. 26, 1093-1103 (2008).
[CrossRef]

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, "Technology innovations and architecture solutions for the next-generation optical access network," Bell Labs Tech. J. 13, 163-181 (2008).
[CrossRef]

S. G. Mun, S. M. Lee, K. Okamoto, and C. H. Lee, "A multiple star WDM-PON using a band splitting WDM filter," Opt. Express 16, 6260-6266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-9-6260.
[CrossRef] [PubMed]

C. H. Lee, W. V. Sorin, and B. Y. Kim, "Fiber to the home using a PON infrastructure," J. Lightwave Technol. 24, 4568-4583 (2006).
[CrossRef]

I. Sankawa, F. Yamamoto, Y. Okumura, and Y. Ogura, "Cost and quantity analysis of passive double-star optical-access-network facilities for broadband service multiplexing," J. Lightwave Technol. 24, 3625-3634 (2006).
[CrossRef]

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, and D. M. Holburn, "Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing," Opt. Express. 12, 764-769 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-5-764.
[CrossRef] [PubMed]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee, "Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review," J. Opt. Networking 4, 737-758 (2005).
[CrossRef]

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, "Silica-based arrayed-waveguide grating circuit as opticalsplitter/router," Electron. Lett. 31, 726-727, (1995).
[CrossRef]

Y. Li, L. Cohen, C. Henry, E. Laskowski, and M. Cappuzzo, "Demonstration and application of a monolithic two-PONs-in-one device," in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, (NEXUS Media Ltd., Oslo, Norway, 1996), pp. 123-126.

B. Little, "A VLSI photonics platform," in Optical Fiber Communication Conference, pp. 444-445 (2003).

C. L. Xu, X. B. Hong, and W. P. Huang, "Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit," Opt. Express 14, 4675-4686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-11-4675.
[CrossRef] [PubMed]

APSS, "Apollo photonics solution suite," Apollo Inc., Hamilton, Ontario Canada.

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-Imaging - principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

J. Lin, "Theoretical investigation of polarization-insensitive multimode interference splitters on silicon-on-insulator," IEEE Photon Technol. Lett. 20, 1234-1236 (2008).
[CrossRef]

K. Smit, and C. vanDam, "PHASAR-based WDM-devices: Principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

X. Dai, and S. L. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31, 1988-1990 (2006).
[CrossRef] [PubMed]

L. H. Spiekman, M. R. Amersfoort, A. H. deVreede, F. P. G. M. vanHam, A. Kuntze, J. W. Pedersen, P. Demeester, and M. K. Smit, "Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM," J. Lightwave Technol. 14, 991-995 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

WDM-PON scheme (a) a typical WDM- PON, (b) a hybrid WDM-PON.

Fig. 2.
Fig. 2.

Schematic configuration for the wavelength demultiplexer-power combiner.

Fig. 3.
Fig. 3.

Experiment set-up for the wavelength demultiplexer-power combiner.

Fig. 4.
Fig. 4.

Experimental results of the wavelength demultiplexer-power combiner.

Fig. 5.
Fig. 5.

Circuit layout of the designed wavelength demuliplexer and power combiner.

Fig. 6.
Fig. 6.

Spectral response of an optimized 1×2 MMI.

Fig. 7.
Fig. 7.

Spectral response of 1×4 MMI.

Fig. 8.
Fig. 8.

Spectral response of the waveguide cross.

Fig. 9.
Fig. 9.

Spectral response of the 1×4 AWG. (a) X polarization, (b) Y polarization.

Fig. 10.
Fig. 10.

Spectral response of the PLC wavelength demultiplexer-power combiner.

Metrics