Abstract

This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radio over fiber transceiver employing phase modulation of an optical broadband source

Fulvio Grassi, José Mora, Beatriz Ortega, and José Capmany
Opt. Express 18(21) 21750-21756 (2010)

Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks [Invited]

Gee-Kung Chang, Arshad Chowdhury, Zhensheng Jia, Hung-Chang Chien, Ming-Fang Huang, Jianjun Yu, and Georgios Ellinas
J. Opt. Commun. Netw. 1(4) C35-C50 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home Using a PON Infrastructure,” J. Lightwave Technol. 24, 4568–4583 (2006).
    [Crossref]
  2. L.G. Kazovsky, S. W. T. Shaw, D. Gutierrez, N. Cheng, and S.W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25, 3428–3442 (2007).
    [Crossref]
  3. Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
    [Crossref]
  4. J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 502–504 (2006).
    [Crossref]
  5. M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
    [Crossref]
  6. P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
    [Crossref]
  7. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s Operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20, 1533–1535 (2008).
    [Crossref]
  8. J. Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” in Proc. Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.
  9. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
    [Crossref]
  10. J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a Novel WDM-PON Access Network Compatible with ROF System to provide 2.5Gb/s per Channel Symmetric Data Services,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OThM5.
  11. R. Lin, “Next Generation PON in Emerging Networks,” in Proc. Optical Fiber Communication Conf (OFC2008), San Diego (CA), Feb. 2008, OWH1.
  12. G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Ligthwave Technol. 14, 2141–2148 (1996).
    [Crossref]
  13. G. H. Smith, D. Novak, and Z. Ahmed, “Tecnique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
    [Crossref]

2008 (1)

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s Operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20, 1533–1535 (2008).
[Crossref]

2007 (3)

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

L.G. Kazovsky, S. W. T. Shaw, D. Gutierrez, N. Cheng, and S.W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25, 3428–3442 (2007).
[Crossref]

2006 (2)

C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home Using a PON Infrastructure,” J. Lightwave Technol. 24, 4568–4583 (2006).
[Crossref]

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 502–504 (2006).
[Crossref]

2005 (1)

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

2004 (1)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
[Crossref]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Tecnique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

1996 (1)

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Ligthwave Technol. 14, 2141–2148 (1996).
[Crossref]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Tecnique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

Banerjee,

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Chang, G. K.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a Novel WDM-PON Access Network Compatible with ROF System to provide 2.5Gb/s per Channel Symmetric Data Services,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OThM5.

Cheng, N.

Cho, J.

J. Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” in Proc. Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.

Cho, K. Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s Operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20, 1533–1535 (2008).
[Crossref]

Choi, H. Y.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
[Crossref]

Chung, Y. C.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s Operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20, 1533–1535 (2008).
[Crossref]

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
[Crossref]

Clarke, F.

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Ellinas, G.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a Novel WDM-PON Access Network Compatible with ROF System to provide 2.5Gb/s per Channel Symmetric Data Services,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OThM5.

Gupta, G. C.

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

Gutierrez, D.

L.G. Kazovsky, S. W. T. Shaw, D. Gutierrez, N. Cheng, and S.W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25, 3428–3442 (2007).
[Crossref]

J. Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” in Proc. Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.

Han, K. H.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
[Crossref]

Han, S. K.

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 502–504 (2006).
[Crossref]

Iwamura, H.

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

Jia, Z.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a Novel WDM-PON Access Network Compatible with ROF System to provide 2.5Gb/s per Channel Symmetric Data Services,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OThM5.

Jun, S. B.

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

Jung, D. K.

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

Kamijoh, T.

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

Kang, J. M.

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 502–504 (2006).
[Crossref]

Kashima, M.

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

Kazovsky, L. G.

J. Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” in Proc. Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.

Kazovsky, L.G.

Kim, B. Y.

Kim, H.

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

Kim, J.

J. Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” in Proc. Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.

Kim, K.

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Kramer, G.

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Lee, C.-H.

Lee, W. R.

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

Lim, K. W.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
[Crossref]

Lin, R.

R. Lin, “Next Generation PON in Emerging Networks,” in Proc. Optical Fiber Communication Conf (OFC2008), San Diego (CA), Feb. 2008, OWH1.

Mukherjee, B.

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Tecnique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

Park, P. K. J.

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

Park, Y.

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Pendock, G. J.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Ligthwave Technol. 14, 2141–2148 (1996).
[Crossref]

Sampson, D. D.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Ligthwave Technol. 14, 2141–2148 (1996).
[Crossref]

Shaw, S. W. T.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Tecnique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

Son, E. S.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
[Crossref]

Song, H.

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Sorin, W. V.

Takushima, Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s Operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20, 1533–1535 (2008).
[Crossref]

Tamai, H.

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

Tang, S.

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Ushikubo, T.

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

Wang, T.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a Novel WDM-PON Access Network Compatible with ROF System to provide 2.5Gb/s per Channel Symmetric Data Services,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OThM5.

Watanabe, R.

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

Wong, S.W.

Yu, J.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a Novel WDM-PON Access Network Compatible with ROF System to provide 2.5Gb/s per Channel Symmetric Data Services,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OThM5.

Electron. Lett. (2)

M. Kashima, G. C. Gupta, H. Iwamura, H. Tamai, R. Watanabe, T. Ushikubo, and T. Kamijoh, “42 dB loss budget hybrid DWDM-CDM-PON without optical amplifier,” Electron. Lett. 43, 49–50 (2007).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Tecnique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 502–504 (2006).
[Crossref]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s Operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20, 1533–1535 (2008).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380–2382 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Ligthwave Technol. (1)

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Ligthwave Technol. 14, 2141–2148 (1996).
[Crossref]

J. Opt. Networking (1)

Banerjee, Y. Park, F. Clarke, H. Song, S. Tang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for boradband access: a review [Invited],” J. Opt. Networking 4, 737–758 (2005).
[Crossref]

Opt. Express (1)

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung. “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 21, 14228–14233 (2007).
[Crossref]

Other (3)

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a Novel WDM-PON Access Network Compatible with ROF System to provide 2.5Gb/s per Channel Symmetric Data Services,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OThM5.

R. Lin, “Next Generation PON in Emerging Networks,” in Proc. Optical Fiber Communication Conf (OFC2008), San Diego (CA), Feb. 2008, OWH1.

J. Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” in Proc. Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig.1.
Fig.1. Block diagram of the SCM transmission system.
Fig. 2.
Fig. 2. System response with 10 Km optical fibre and DSB-SSB modulations
Fig. 3.
Fig. 3. System responses for different 3dB-bandwidths with (a) Lorentzian, (b) Gaussian and (c) rectangular profile, (d) 3 dB transmission bandwidth of the transmission band as a function of the optical source bandwidth of each profile.
Fig. 8.
Fig. 8. Block diagram of configuration 1
Fig. 9.
Fig. 9. Block diagram of configuration 2.
Fig. 10.
Fig. 10. (a) Optical spectra of the ASE source employed in the experiment, (b) optical spectra after the optical channel selector and (b) optical spectra when an optical delay of 3.1 ps is set in the MZI.
Fig. 11.
Fig. 11. Transfer function response for different delays using configuration 1 over 10 Km fiber link. (a) Experimental, (b) Theoretical for an optical delays of 8.25 (oe-17-6-4740-i001), 15.16 (oe-17-6-4740-i002), 23.36 (oe-17-6-4740-i003), 31.34 (oe-17-6-4740-i004), 39.34 (oe-17-6-4740-i005), 47.34 (oe-17-6-4740-i006), 55.62 (oe-17-6-4740-i007) and 63.14 (oe-17-6-4740-i008) ps.
Fig. 12.
Fig. 12. Characterisation of different parameters in the transfer function vs the MZI difference delay (10 km fiber link): a) Central frequency and 3 dB bandwidth (green trace: experimental, red trace: theoretical), b) Experimental peak amplitude (oe-17-6-4740-i009), MSLR 1 (oe-17-6-4740-i010; secondary right lobe) and MSLR 2 (oe-17-6-4740-i011 ; secondary left lobule).
Fig. 13.
Fig. 13. Transfer function response for different frequencies with configuration 2 and 10 Km. (a) Experimental (b) Theoretical for an optical delays of 7.13 (oe-17-6-4740-i012), 15.37 (oe-17-6-4740-i013), 23.18 (oe-17-6-4740-i014), 31.28 (oe-17-6-4740-i015), 38.78 (oe-17-6-4740-i016), 48.07 (oe-17-6-4740-i017), 54.62 (oe-17-6-4740-i018) and 63.73 (oe-17-6-4740-i019) ps.
Fig. 14.
Fig. 14. Characterisation of different parameters in the transfer function vs the MZI difference delay (10 km fiber link): a) Central frequency and 3 dB bandwidth (green trace: experimental, red trace: theoretical), b) Experimental peak amplitude (oe-17-6-4740-i020), MSRL 1 (oe-17-6-4740-i021; secondary right lobe) and MSRL 2 (oe-17-6-4740-i022 ; secondary left lobule).
Fig. 15.
Fig. 15. (a) Central frequency of the passband as a function of the optical source width for 10 Km (inset: amplitude response for the transmission window centered at 25 GHz), (b) 3 dB bandwidth of the passband as a function of the optical source width taking into account the third order oe-17-6-4740-i023 and second order oe-17-6-4740-i024 β(ω) Taylor expansion for 10 Km.

Tables (2)

Tables Icon

Table 1. Comparison of optical sources spectra with different profile and the corresponding transfer function.

Tables Icon

Table 2. Values for 3dB-bandwith considered for the Lorentzian, Gaussian and Rectangular profiles.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H OPT ( ω ) = H OPT ( ω ) · e ( ω )
H RF ( Ω ) = m 0 . ( Z L ) · E 2 ( ω ) 2 [ m 1 H OPT ( ω ) . H OPT * ( ω + Ω ) + m 2 H OPT ( ω Ω ) · H OPT * ( ω ) ]
H OPT ( ω ) = e 1 2 α · L e ( ω ) ; Φ ( ω ) = β ( ω ) L = β o L + β 1 L ( ω ω o ) + 1 2 β 2 L ( ω ω o ) 2 + 1 6 β 3 L ( ω ω o ) 3
Φ ( ω ± Ω ) Φ ( ω ) ± β 1 + 1 2 β 2 L Ω 2 ± β 2 ( ω ω o ) β 3 ( ω ω o ) 2
H RF ( Ω ) = m 0 · ( Z L ) · P s · e αL · e jτΩ DELAY · [ m 1 · e j 1 2 β 2 L Ω 2 + m 2 · e j 1 2 β 2 L Ω 2 ] CSE ( Ω ) · E s ( ω ) 2 · e j β 2 L ( ω ω o ) Ω E s ( ω ) 2
H RF ( Ω ) = m 0 · ( Z L ) · P o · e αL · e jτΩ · m · CSE ( Ω )
CSE ( Ω ) = cos ( 1 2 β 2 L Ω 2 )
Ω k = ( 2 k + 1 ) π β 2 L , k Z
H o RF ( Ω ) = S ( ω ) · e j β 2 L ( ω ω 0 ) Ω · S ( ω ) ·
H MZ ( ω ) = 1 2 [ e j ( ω ω o ) τ 1 + e j ( ω ω o ) τ 2 ]
E s ( ω ) 2 = S ( ω ) · H MZ ( ω ) 2
H RF ( Ω ) = m o ( Z L ) · P s 2 · e αL e ατΩ · m · CSE ( Ω ) · [ H o RF ( Ω ) + 1 2 H o RF ( Ω Ω o ) + 1 2 H o RF ( Ω + Ω o ) ]
Ω o = Δτ β 2 L
H OPT ( ω ) = H FIBER ( ω ) · H MZ ( ω )
H RF ( Ω ) = m o ( Z L ) · P s 2 m 1 e αL e jτΩ · e τ 1 + τ 2 2 · { cos ( Ω Δτ 2 ) · cos ( 1 2 β L Ω 2 ) CSE · H o RF ( Ω ) +
+ 1 2 · cos ( 1 2 β ( Ω Ω o ) ) CSE mod · H o RF ( Ω Ω o ) + 1 2 · cos ( 1 2 β ( Ω + Ω o ) ) · H o RF ( Ω + Ω o ) }
δ ω c 1 β 3 · L · Ω o

Metrics